精英家教网 > 高中数学 > 题目详情
1.某校有1400名考生参加市模拟考试,现采用分层抽样的方法从文、理考生中分别抽取20份和50份数学试卷,进行成绩分析.得到下面的成绩频率分布表:
分数分值[0,30)[30,60)[60,90)[90,120)[120,150)
文科频数24833
理科频数3712208
(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);
(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:
文科理科
概念1530
其它520
问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表)
附参考公式与数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

分析 (1)根据平均数公式,即可求解文科数学平均分,再根据表中数据可求解理科考生的及格人数.
(2)利用独立性检验的公式,求解K2=1.4<2.706,可判断没有90%的把握认为概念失分与文、理考生的不同有关.

解答 解:(1)估计文科数学平均分为:$\frac{15×2+45×4+75×8+105×3+135×3}{20}$=76.5.
∵1400×$\frac{50}{70}$=1000,1000×$\frac{20+8}{50}=560$,
∴理科考生的及格人数为560人.
(2)K2=$\frac{70(15×20-5×30)^{2}}{20×50×25×45}$=1.4<2.706,
∴没有90%的把握认为概念失分与文、理考生的不同有关.

点评 本题考查平均数、频数的求法,考查独立性检验的应用,是中档题,解题时要认真审题,注意数据处理能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知圆C经过点$A(-\sqrt{3},-1),B(1,\sqrt{3})$,且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P,Q两点.
(1)求圆C的方程;
(2)若$\overrightarrow{OP}•\overrightarrow{OQ}=-2$(点O为原点),求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A(-1,0),B(2,4),△ABC的面积为10,则动点C的轨迹方程是(  )
A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0
C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=acos({2x+\frac{π}{3}})-b$(a>0)的最大值为3,最小值为-1.
(1)求a,b的值;
(2)求当$x∈[{\frac{π}{4},\frac{7π}{12}}]$时,函数$g(x)=2bsin({2ax-\frac{π}{6}})+1$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+2x
(1)求在点(0,0)处曲线y=f(x)的切线方程;
(2)求过点(-1,-3)的曲线y=f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数 f( x)=a-$\frac{1}{{2}^{x}+1}$( x∈R).
(1)若 f( x)为奇函数,求 a的值;
(2)在(1)的条件下,求 f( x)在区间[1,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某烹饪学院为了弘扬中国传统的饮食文化,举办了一场由在校学生参加的处以大赛,组委会为了了解本次大赛参赛学生的成绩情况,从参赛学生中抽取了n名学生的成绩(满分100分)作为样本,将所得数经过分析整理后画出了评论分布直方图和茎叶图,其中茎叶图收到污染,请据此解答下列问题:
(1)求频率分布直方图中a,b的值并估计此次参加厨艺大赛学生的平均成绩;
(2)规定大赛成绩在[80,90)的学生为厨霸,在[90,100]的学生为厨神,现从被称为厨霸、厨神的学生中随机抽取2人取参加校际之间举办的厨艺大赛,求所取2人总至少有1人是厨神的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.210所有正约数的个数共有(  )
A.12个B.14个C.16个D.20个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1,它的两个焦点分别为F1、F2,若|F1F2|=8,弦AB过F1则△ABF2的周长为(  )
A.10B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

同步练习册答案