精英家教网 > 高中数学 > 题目详情
6.已知函数 f( x)=a-$\frac{1}{{2}^{x}+1}$( x∈R).
(1)若 f( x)为奇函数,求 a的值;
(2)在(1)的条件下,求 f( x)在区间[1,5]上的最小值.

分析 (1)由f( x)为R上的奇函数,可得f(0)=0,解得a即可得出.
(2)由(1)知:f(x)=$\frac{1}{2}-\frac{1}{{2}^{x}+1}$,可知:f( x)在(-∞,+∞)上为增函数,因此f( x)在区间[1,5]上的最小值为f(1).即可得出.

解答 解:(1)∵f( x)为R上的奇函数,
∴f(0)=0,即a-$\frac{1}{{2}^{0}+1}$=0,解得a=$\frac{1}{2}$.
(2)由(1)知:f(x)=$\frac{1}{2}-\frac{1}{{2}^{x}+1}$,
f( x)在(-∞,+∞)上为增函数,
∴f( x)在区间[1,5]上的最小值为f(1).
∵f(1)=$\frac{1}{2}-\frac{1}{2+1}$=$\frac{1}{6}$,
∴f( x)在区间[1,5]上的最小值为$\frac{1}{6}$.

点评 本题考查函数的单调性与奇偶性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在四边形ABCD中,AD⊥AB,DC∥AB,$AD=AE=DC=\frac{1}{2}AB=4$,△MDC是等边三角形,且平面MDC⊥平面ABCD.
(Ⅰ)证明:EC∥平面MAD;
(Ⅱ)求三棱锥B-AMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,a=4,b=2$\sqrt{6},B={60°}$,则此三角形解的情况是(  )
A.一解或两解B.两解C.一解D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$|{\overrightarrow a}|=\sqrt{3}$,$|{\overrightarrow b}|=3\sqrt{3}$,若向量$\overrightarrow a在\overrightarrow b$方向上的投影为$\frac{{\sqrt{3}}}{2}$,且向量$\overrightarrow a-\overrightarrow c$与向量$\overrightarrow b-\overrightarrow c$的夹角为120°,则$|{\overrightarrow c}$|的最大值等于$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校有1400名考生参加市模拟考试,现采用分层抽样的方法从文、理考生中分别抽取20份和50份数学试卷,进行成绩分析.得到下面的成绩频率分布表:
分数分值[0,30)[30,60)[60,90)[90,120)[120,150)
文科频数24833
理科频数3712208
(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);
(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:
文科理科
概念1530
其它520
问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表)
附参考公式与数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O处向东走1km是储备基地的边界上的点A,接着向东再走7km到达公路上的点B;从基地中心O向正北走8km到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从4名男同学和3名女同学中选出3名参加某项活动,其中男女生都有的选法种数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列1,2,$\sqrt{7}$,$\sqrt{10}$,$\sqrt{13}$的第六项是(  )
A.6B.4C.$\sqrt{15}$D.$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A={(m,n)|0<m<2,0<n<2},则任取(m,n)∈A,关于x的方程$\frac{m}{4}$x2+x+n=0有实根的概率为(  )
A.$\frac{1+2ln2}{4}$B.$\frac{1+ln2}{2}$C.$\frac{3-2ln2}{4}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

同步练习册答案