分析 (1)由f( x)为R上的奇函数,可得f(0)=0,解得a即可得出.
(2)由(1)知:f(x)=$\frac{1}{2}-\frac{1}{{2}^{x}+1}$,可知:f( x)在(-∞,+∞)上为增函数,因此f( x)在区间[1,5]上的最小值为f(1).即可得出.
解答 解:(1)∵f( x)为R上的奇函数,
∴f(0)=0,即a-$\frac{1}{{2}^{0}+1}$=0,解得a=$\frac{1}{2}$.
(2)由(1)知:f(x)=$\frac{1}{2}-\frac{1}{{2}^{x}+1}$,
f( x)在(-∞,+∞)上为增函数,
∴f( x)在区间[1,5]上的最小值为f(1).
∵f(1)=$\frac{1}{2}-\frac{1}{2+1}$=$\frac{1}{6}$,
∴f( x)在区间[1,5]上的最小值为$\frac{1}{6}$.
点评 本题考查函数的单调性与奇偶性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数分值 | [0,30) | [30,60) | [60,90) | [90,120) | [120,150) |
| 文科频数 | 2 | 4 | 8 | 3 | 3 |
| 理科频数 | 3 | 7 | 12 | 20 | 8 |
| 文科 | 理科 | |
| 概念 | 15 | 30 |
| 其它 | 5 | 20 |
| P(K2≥k) | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 4 | C. | $\sqrt{15}$ | D. | $\sqrt{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1+2ln2}{4}$ | B. | $\frac{1+ln2}{2}$ | C. | $\frac{3-2ln2}{4}$ | D. | $\frac{1-ln2}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com