精英家教网 > 高中数学 > 题目详情
11.椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1,它的两个焦点分别为F1、F2,若|F1F2|=8,弦AB过F1则△ABF2的周长为(  )
A.10B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

分析 由|F1F2|=8=2c,b=3,a2=b2+c2,解得a,再利用椭圆的定义即可得出.

解答 解:∵|F1F2|=8=2c,解得c=4,
又b=3,∴a2=32+42=25,解得a=5.
∴弦AB过F1则△ABF2的周长=|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=20.
故选:B.

点评 本题考查了椭圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某校有1400名考生参加市模拟考试,现采用分层抽样的方法从文、理考生中分别抽取20份和50份数学试卷,进行成绩分析.得到下面的成绩频率分布表:
分数分值[0,30)[30,60)[60,90)[90,120)[120,150)
文科频数24833
理科频数3712208
(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);
(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:
文科理科
概念1530
其它520
问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表)
附参考公式与数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算:16${\;}^{\frac{1}{lo{g}_{6}4}}$+49${\;}^{\frac{1}{lo{g}_{8}7}}$=100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),点(0,b)到右焦点F的距离与它到直线l:x=4的距离比恰为离心率$\frac{1}{2}$,
(1)求椭圆C的方程;
(2)设P(1,$\frac{3}{2}$),AB是经过右焦点F的任一弦(不经过点P),设直线AB与l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3,问:是否存在常数λ,使得k1+k2=λk3?若存在,求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.江门对市民进行经济普查,在某小区共400户居民中,已购买电脑的家庭有358户,已购买私家车的有42户,两者都有的有34户,则该小区两者都没购买的家庭有(  )户.
A.0户B.34户C.42户D.358户

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A={(m,n)|0<m<2,0<n<2},则任取(m,n)∈A,关于x的方程$\frac{m}{4}$x2+x+n=0有实根的概率为(  )
A.$\frac{1+2ln2}{4}$B.$\frac{1+ln2}{2}$C.$\frac{3-2ln2}{4}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过点F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点,当直线l与x轴垂直时,$\frac{|CD|}{|AB|}$=2$\sqrt{2}$.
(1)求椭圆的方程;
(2)设F2是椭圆的右焦点,求$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}B}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设x∈R,定义符号函数sgnx=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则函数f(x)=|x|sgnx的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等差数列{an}中,Sn为其前n项和,已知a2=2,S5=15,数列{bn},b1=1,对任意n∈N+满足bn+1=2bn+1.
(Ⅰ)数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{a_n}{{{b_n}+1}}$,设数列{cn}的前n项和Tn,证明:Tn<2.

查看答案和解析>>

同步练习册答案