精英家教网 > 高中数学 > 题目详情
20.设x∈R,定义符号函数sgnx=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则函数f(x)=|x|sgnx的图象大致是(  )
A.B.C.D.

分析 根据新定义可得f(x)=|x|sgnx=$\left\{\begin{array}{l}{x,x>0}\\{0,x=0}\\{x,x<0}\end{array}\right.$=x,问题得以解决.

解答 解:函数f(x)=|x|sgnx=$\left\{\begin{array}{l}{x,x>0}\\{0,x=0}\\{x,x<0}\end{array}\right.$=x,
故函数f(x)=|x|sgnx的图象为y=x所在的直线,
故选:C

点评 本题考查了新定义和函数图象的识别,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.210所有正约数的个数共有(  )
A.12个B.14个C.16个D.20个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1,它的两个焦点分别为F1、F2,若|F1F2|=8,弦AB过F1则△ABF2的周长为(  )
A.10B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.0•$\overrightarrow a$=0B.若$\overrightarrow a$⊥$\overrightarrow b$,则|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|
C.若$\overrightarrow a$•$\overrightarrow b$=0,则$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow 0$D.若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,则$\overrightarrow b$=$\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x)=x2-ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n).
(1)求f(x)的表达式;
(2)求数列{an}的通项公式;
(3)设bn=($\sqrt{3}$)${\;}^{{a_n}+5}}$,cn=$\frac{{6b_n^2+{b_{n+1}}-{b_n}}}{{{b_n}{b_{n+1}}}}$,{cn}的前n项和为Tn,若Tn>2n+t对任意n∈N,n≥2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若定义在R上的可导函数f(x)是奇函数,且对?x∈[0,+∞),f'(x)>0恒成立.如果实数t满足不等式f(lnt)-f(ln$\frac{1}{t}$)<2f(1),则t的取值范围是(0,e).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列叙述中,正确的个数是(  )
①命题p:“?x∈[2,+∞),x2-2≥0”的否定形式为¬p:“?x∈(-∞,2),x2-2<0”;
②O是△ABC所在平面上一点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$,则O是△ABC的垂心;
③在△ABC中,A<B是cos2A>cos2B的充要条件;
④函数y=sin(2x+$\frac{π}{3}}$)sin(${\frac{π}{6}-$2x)的最小正周期是π.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={x|x2-2x≥0},B={x|y=log2(x2-1)},则(∁UA)∩B=(  )
A.[1,2)B.(1,2)C.(1,2]D.(-∞,-1)∪[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三棱锥O-ABC,A、B、C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O-ABC的体积为$\frac{\sqrt{5}}{4}$,则球O的体积是$\frac{256}{3}$π.

查看答案和解析>>

同步练习册答案