精英家教网 > 高中数学 > 题目详情
12.下列叙述中,正确的个数是(  )
①命题p:“?x∈[2,+∞),x2-2≥0”的否定形式为¬p:“?x∈(-∞,2),x2-2<0”;
②O是△ABC所在平面上一点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$,则O是△ABC的垂心;
③在△ABC中,A<B是cos2A>cos2B的充要条件;
④函数y=sin(2x+$\frac{π}{3}}$)sin(${\frac{π}{6}-$2x)的最小正周期是π.
A.1B.2C.3D.4

分析 求出命题p的否定形式可判断①,由已知条件得到OB⊥AC,同理可得O是△ABC三条高线的交点可判断②,由二倍角公式和正弦定理可判断③,直接求出函数y=sin(2x+$\frac{π}{3}}$)sin(${\frac{π}{6}-$2x)的最小正周期可判断④.

解答 解:对于①,命题p:“?x∈[2,+∞),x2-2≥0”的否定形式为¬p:“?x∈[2,+∞),x2-2<0”,故①错误;
对于②,由$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$,得到$\overrightarrow{OB}(\overrightarrow{OC}-\overrightarrow{OA})=0$,又$\overrightarrow{OC}-\overrightarrow{OA}=\overrightarrow{AC}$,得$\overrightarrow{OB}•\overrightarrow{AC}=0$,可得OB⊥AC,因此,点O在AC边上的高BE上,同理可得:O点在BC边上的高AF和AB边上的高CD上,即点O是△ABC三条高线的交点,因此,点O是△ABC的垂心,故②正确;
对于③,在△ABC中,cos2A>cos2B?1-2sin2A>1-2sin2B?sin2A<sin2B?sinA<sinB?a<b?A<B,
∴“A<B”是“cos2A>cos2B”的充要条件,故③正确;
对于④,y=sin(2x+$\frac{π}{3}}$)sin(${\frac{π}{6}-$2x)=$\frac{1}{2}sin(4x+\frac{2π}{3})$,∴T=$\frac{2π}{4}$=$\frac{π}{2}$,故④错误.
∴正确的个数是:2.
故选:B.

点评 本题考查了命题的真假判断与应用,考查了充要条件及三角函数的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.计算:16${\;}^{\frac{1}{lo{g}_{6}4}}$+49${\;}^{\frac{1}{lo{g}_{8}7}}$=100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过点F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点,当直线l与x轴垂直时,$\frac{|CD|}{|AB|}$=2$\sqrt{2}$.
(1)求椭圆的方程;
(2)设F2是椭圆的右焦点,求$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}B}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设x∈R,定义符号函数sgnx=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则函数f(x)=|x|sgnx的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ=4cosθ,射线θ=φ,θ=φ+$\frac{π}{4}$,θ=φ-$\frac{π}{4}$与曲线C交于(不包括极点O)三点A,B,C.
(Ⅰ)求证:|OB|+|OC|=$\sqrt{2}$|OA|;
(Ⅱ)当φ=$\frac{π}{12}$时,求三角形△OBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知偶函数y=f(x)在区间(-∞,0]上是增函数,下列不等式一定成立的是(  )
A.f(3)>f(-2)B.f(-π)>f(3)C.f(1)>f($\sqrt{2}$)D.f(a2+2)>f(a2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直三棱柱ABC-A1B1C1中,∠BAC=$\frac{π}{2}$,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连结AP交棱CC1于点D.求:
(1)直线PB1与A1B所成角的余弦值;
(2)二面角A-A1D-B的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等差数列{an}中,Sn为其前n项和,已知a2=2,S5=15,数列{bn},b1=1,对任意n∈N+满足bn+1=2bn+1.
(Ⅰ)数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{a_n}{{{b_n}+1}}$,设数列{cn}的前n项和Tn,证明:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:四边形ABCD是空间四边形,E,H分别是边AB,AD的中点,F,G分别是边CB,CD上的点,且$\frac{BF}{BC}$=$\frac{DG}{DC}$=$\frac{2}{3}$,求证:直线FE、GH、AC交于一点.

查看答案和解析>>

同步练习册答案