精英家教网 > 高中数学 > 题目详情
4.如图,在直三棱柱ABC-A1B1C1中,∠BAC=$\frac{π}{2}$,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连结AP交棱CC1于点D.求:
(1)直线PB1与A1B所成角的余弦值;
(2)二面角A-A1D-B的平面角的正弦值.

分析 (1)以A1为原点,A1B1为x轴,A1C1为y轴,A1A为z轴,建立空间直角坐标系,利用向量法能求出直线PB1与A1B所成角的余弦值.
(2)求出平面A1DB的法向量和平面AA1D的法向量,利用向量法能求出二面角A-A1D-B的平面角的正弦值.

解答 解:(1)以A1为原点,A1B1为x轴,A1C1为y轴,A1A为z轴,建立空间直角坐标系,
则P(0,2,0),B1(1,0,0),B(1,0,1),A1(0,0,0),
$\overrightarrow{P{B}_{1}}$=(1,-2,0),$\overrightarrow{{A}_{1}B}$=(1,0,1),
设直线PB1与A1B所成角为θ,
则cosθ=$\frac{|\overrightarrow{P{B}_{1}}•\overrightarrow{{A}_{1}B}|}{|\overrightarrow{P{B}_{1}}|•|\overrightarrow{{A}_{1}B}|}$=$\frac{1}{\sqrt{5}•\sqrt{2}}$=$\frac{\sqrt{10}}{10}$,
∴直线PB1与A1B所成角的余弦值为$\frac{\sqrt{10}}{10}$.
(2)D(0,1,$\frac{1}{2}$),$\overrightarrow{{A}_{1}D}$=(0,1,$\frac{1}{2}$),$\overrightarrow{{A}_{1}B}$=(1,0,1),
设平面A1DB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}D}=y+\frac{1}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}B}=x+z=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,1,-2),
平面AA1D的法向量$\overrightarrow{m}$=(1,0,0),
设二面角A-A1D-B的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{3}$,sin$θ=\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$.
∴二面角A-A1D-B的平面角的正弦值为$\frac{\sqrt{5}}{3}$.

点评 本题考查异面直线所成角的余弦值的求法,考查二面角的正弦值的求法,是中档题,解题时要注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,P(2,0)是它一个顶点,直线l:y=k(x-1)与椭圆C交于不同的两点A.B.
(Ⅰ)求椭圆C的方程及焦点坐标;
(Ⅱ)若△PAB的面积为$\frac{\sqrt{10}}{3}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x)=x2-ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n).
(1)求f(x)的表达式;
(2)求数列{an}的通项公式;
(3)设bn=($\sqrt{3}$)${\;}^{{a_n}+5}}$,cn=$\frac{{6b_n^2+{b_{n+1}}-{b_n}}}{{{b_n}{b_{n+1}}}}$,{cn}的前n项和为Tn,若Tn>2n+t对任意n∈N,n≥2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列叙述中,正确的个数是(  )
①命题p:“?x∈[2,+∞),x2-2≥0”的否定形式为¬p:“?x∈(-∞,2),x2-2<0”;
②O是△ABC所在平面上一点,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$,则O是△ABC的垂心;
③在△ABC中,A<B是cos2A>cos2B的充要条件;
④函数y=sin(2x+$\frac{π}{3}}$)sin(${\frac{π}{6}-$2x)的最小正周期是π.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.我国是世界上严重缺水的国家,城市缺水尤为突出,某市为了制定合理的节水方案,从该市随机调查了100位居民,获得了他们某月的用水量,整理得到如图的频率分布直方图.
(1)求图中a的值并估计样本的众数;
(2)该市计划对居民生活用水试行阶梯水价,即每位居民月用水量不超过ω吨的按2元/吨收费,超过ω吨不超过2ω吨的部分按4元/吨收费,超过2ω吨的部分按照10元/吨收费.
①用样本估计总体,为使75%以上居民在该月的用水价格不超过4元/吨,ω至少定为多少?
②假设同组中的每个数据用该组区间的右端点值代替,当ω=2时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={x|x2-2x≥0},B={x|y=log2(x2-1)},则(∁UA)∩B=(  )
A.[1,2)B.(1,2)C.(1,2]D.(-∞,-1)∪[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果函数f(x)的定义域为[-1,3],那么函数f(2x+3)的定义域为(  )
A.[-2,0]B.[1,9]C.[-1,3]D.[-2,9]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.A,B,C为空间三点,经过这三点的平面有1或无数个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=sin2x的图象经过怎样的平移变换得到函数y=sin($\frac{π}{3}-2x$)的图象(  )
A.向左平移$\frac{2π}{3}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

同步练习册答案