精英家教网 > 高中数学 > 题目详情

已知等比数列{an}的前n项和为Sn,S3=14,S6=126.
(1)求数列{an}的通项公式;
(2)设数学公式…+数学公式,试求Tn的表达式.

解:(1)∵S3=a1+a2+a3=14,S6=a1+a2+…+a6=126
∴a4+a5+a6=112,∵数列{an}是等比数列,
∴a4+a5+a6=(a1+a2+a3)q3=112
∴q3=8∴q=2
由a1+2a1+4a1=14得,a1=2,
∴an=a1qn-1=2n
(2)由(1)知,===
又a1=2,a2=4,所以数列{}是以为首项,为公比的等比数列.
∴Tn==
分析:(1)根据S3=14,S6=126.可求出a4+a5+a6=112,再利用等比数列各项之间的关系,求出公比q,把S3=a1+a2+a3=14中的每一项用a1和q表示,求出a1,代入等比数列的通项公式即可
(2)由(1)知,===,得出数列{}是以为首项,为公比的等比数列.利用公式求解即可.
点评:本题考查等比数列的判定,通项公式、前n项和的计算,考查方程思想,转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案