精英家教网 > 高中数学 > 题目详情
3.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.
(1)求sinC的值;
(2)设BC=15,求△ABC的周长.

分析 (1)由已知烦你求出sinA,sinB,利用三角形的内角和定理以及两角和与差的正弦公式得到所求;
(2)利用正弦定理求出AB,AC,得到三角形周长.

解答 解:(1)在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$,∴sinA=$\frac{12}{13}$,sinB=$\frac{4}{5}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{12}{13}×\frac{3}{5}+(-\frac{5}{13})×\frac{4}{5}$=$\frac{16}{65}$;
(2)由正弦定理得到$\frac{BC}{sinA}=\frac{AB}{sinC}=\frac{AC}{sinB}$,BC=15,
所以AB=4,AC=13,
所以△ABC的周长为AB+BC+AC=15+4+13=32.

点评 本题主要考查同角三角函数的基本关系,两角差的正弦公式的应用以及利用正弦定理解三角形;熟练掌握三角函数的公式以及定理是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知{an}是等比数列,a1=3,a4=24,数列{bn}满足b1=1,b4=-8,且{an+bn}是等差数列.
(Ⅰ)求数列{an}和{an+bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知($\frac{1}{2}$)x<($\frac{1}{2}$)y<1,则下列不等关系一定成立的是(  )
A.2x<2yB.log2x<log2yC.x3>y3D.cosx<cosy

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{BA}=(\frac{1}{2},\frac{{\sqrt{3}}}{2})$,$\overrightarrow{BC}=(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,则∠ABC=(  )
A.120°B.45°C.30°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的最小值是(  )
A.-1B.$-\frac{4}{3}$C.$-\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-ax+a
(1)当a=-1时,若函数f(x)的图象在点(1,0)处的切线方程为直线1,求直线1的方程;
(2)若函数f(x)有一个大于1的零点,则a的取值范围;
(3)若f(x0)=0,且x0>1,求证:x0>$\frac{2}{a}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函教f(x)=x2-mx+(m+3)的两个零点均在(1,+∞)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z满足(1-i)z=3+i,则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案