精英家教网 > 高中数学 > 题目详情
13.设复数z满足(1-i)z=3+i,则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.

解答 解:由(1-i)z=3+i,
得$z=\frac{3+i}{1-i}=\frac{(3+i)(1+i)}{(1-i)(1+i)}=\frac{2+4i}{2}=1+2i$,
则|z|=$\sqrt{1+{2}^{2}}=\sqrt{5}$.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.
(1)求sinC的值;
(2)设BC=15,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知一四面体的三组对边分别相等,且长度依次为5、$\sqrt{34}$、$\sqrt{41}$.
(1)求该四面体的体积;
(2)求该四面体外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等,”以上推理的大前提是(  )
A.四边形的对角线相等B.矩形的对角线相等
C.矩形是四边形D.对角线相等的四边形是矩形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.我国南宁数学家秦九韶所著《数学九章》中有“米谷粒分”问题,粮仓开仓收粮,粮农送来米1512万石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约189石.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知方程$\frac{{x}^{2}}{s-2017}$$+\frac{{y}^{2}}{s-2019}$=1(s 为正整数)表示焦点在x上的双曲线,则s=(  )
A.2022B.2020C.2018D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若两平行直线3x+4y-2a=0与3x+4y+1=0之间的距离为1,则a等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,δ12),N(μ2,δ22),其正态分布的密度曲线如图所示,则下列说法错误的是(  )
A.甲类水果的平均质量μ1=0.4kg
B.甲类水果的质量比乙类水果的质量更集中于平均值左右
C.甲类水果的平均质量比乙类水果的平均质量小
D.乙类水果的质量服从的正态分布的参数δ2=1.99

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设x,y满足约束条件$\left\{\begin{array}{l}2x+3y-3≤0\\ 2x-3y+3≥0\\ y+3≥0\end{array}\right.$,则z=2x+y的最小值是-15.

查看答案和解析>>

同步练习册答案