精英家教网 > 高中数学 > 题目详情
8.我国南宁数学家秦九韶所著《数学九章》中有“米谷粒分”问题,粮仓开仓收粮,粮农送来米1512万石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约189石.

分析 设这批米内夹谷约x石,利用等可能事件概率计算公式能求出结果.

解答 解:设这批米内夹谷约x石,
由题意得:$\frac{x}{1512}=\frac{27}{216}$,
解得x=189.
故答案为:189.

点评 本题考查概率的求法及应用,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的最小值是(  )
A.-1B.$-\frac{4}{3}$C.$-\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3+ax2+bx+a2在x=1处的极值为10.
(1)求a,b的值;
(2)求函数f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,网络纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为(
A.17πB.22πC.68πD.88π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin($\frac{π}{3}$-2x)的单调递增区间是(  )
A.[-kπ-$\frac{π}{12}$,-kπ+$\frac{5π}{12}$],k∈ZB.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z满足(1-i)z=3+i,则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC的内角A,B,C的对边分别为a,b,c.
(1)A=45°,B=60°,a=$\sqrt{2}$,求b的值
(2)若△ABC的面积为$\frac{{\sqrt{3}}}{2}$,$c=2,A=\frac{π}{3}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设向量$\overrightarrow m=(4cosx,1)$$\overrightarrow n=(sin(x+\frac{π}{6}),-1)$,函数$g(x)=\overrightarrow m•\overrightarrow n$.
(Ⅰ)若ω是函数y=g(x)在$[{0,\frac{π}{2}}]$上的零点,求sinω的值;
(Ⅱ)设$α∈(0,\frac{π}{2}),β∈(\frac{π}{2},π)$,$g(\frac{α}{2}-\frac{π}{6})=\frac{6}{5},g(\frac{β}{2})=-\frac{24}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-x+4a,x<0}\\{{a}^{x}+1,x≥0}\end{array}\right.$(a>0且a≠1)是R上的减函数,则a的取值范围是(  )
A.(0,1)B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

同步练习册答案