精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{-x+4a,x<0}\\{{a}^{x}+1,x≥0}\end{array}\right.$(a>0且a≠1)是R上的减函数,则a的取值范围是(  )
A.(0,1)B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{2}$]

分析 根据题意,利用函数的单调性的性质,可得$\left\{\begin{array}{l}{0<a<1}\\{4a≥2}\end{array}\right.$,由此求得a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-x+4a,x<0}\\{{a}^{x}+1,x≥0}\end{array}\right.$(a>0且a≠1)是R上的减函数,
∴$\left\{\begin{array}{l}{0<a<1}\\{4a≥2}\end{array}\right.$,
∴$\frac{1}{2}$≤a<1,
故选:B.

点评 本题主要考查分段函数的应用,函数的单调性的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.我国南宁数学家秦九韶所著《数学九章》中有“米谷粒分”问题,粮仓开仓收粮,粮农送来米1512万石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约189石.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知过曲线y=(ax+b)ex上的一点P(0,1)的切线方程为2x-y+1=0,则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平行四边形ABCD中,AD=2,∠BAD=60°,$\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AE}$,$\overrightarrow{AE}•\overrightarrow{BD}=1$,则$\overrightarrow{BD}•\overrightarrow{BE}$=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若X~B(n,$\frac{1}{3}$),且D(X)=$\frac{2}{3}$,则P(0≤X≤2)等于(  )
A.$\frac{1}{9}$B.$\frac{8}{9}$C.$\frac{26}{27}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设x,y满足约束条件$\left\{\begin{array}{l}2x+3y-3≤0\\ 2x-3y+3≥0\\ y+3≥0\end{array}\right.$,则z=2x+y的最小值是-15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若cos(α$+\frac{4π}{15}$)=$\frac{4}{5}$,则sin(2α$+\frac{31π}{30}$)=(  )
A.$\frac{3}{5}$B.$\frac{7}{25}$C.$\frac{3}{4}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{f(x+1),(x≤0)}\\{{2}^{x},(x>0)}\end{array}\right.$,则f(-$\frac{3}{2}$)=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=|x-a|,a∈R.
(Ⅰ)当a=2时,求不等式f(x)+|2x-7|≥6的解集;
(Ⅱ)若函数g(x)=f(x)-|x-5|的值域为A,且[-1,2]⊆A,求a的取值范围.

查看答案和解析>>

同步练习册答案