精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}{f(x+1),(x≤0)}\\{{2}^{x},(x>0)}\end{array}\right.$,则f(-$\frac{3}{2}$)=$\sqrt{2}$.

分析 利用分段函数的性质即可得出.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{f(x+1),(x≤0)}\\{{2}^{x},(x>0)}\end{array}\right.$,
则f(-$\frac{3}{2}$)=$f(-\frac{3}{2}+1)$=$f(-\frac{1}{2})$=$f(-\frac{1}{2}+1)$=$f(\frac{1}{2})$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了分段函数的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设向量$\overrightarrow m=(4cosx,1)$$\overrightarrow n=(sin(x+\frac{π}{6}),-1)$,函数$g(x)=\overrightarrow m•\overrightarrow n$.
(Ⅰ)若ω是函数y=g(x)在$[{0,\frac{π}{2}}]$上的零点,求sinω的值;
(Ⅱ)设$α∈(0,\frac{π}{2}),β∈(\frac{π}{2},π)$,$g(\frac{α}{2}-\frac{π}{6})=\frac{6}{5},g(\frac{β}{2})=-\frac{24}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-x+4a,x<0}\\{{a}^{x}+1,x≥0}\end{array}\right.$(a>0且a≠1)是R上的减函数,则a的取值范围是(  )
A.(0,1)B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\frac{x}{x-2}+cos\frac{π}{4}x$在[0,2)上的最大值为a,在(2,4]上的最小值为b,则a+b=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函数f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求函数f(x)的单调递增区间;
(2)当x∈(0,$\frac{π}{2}$)时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.袋中有形状、大小都相同的4个球,其中2个红球,2个白球.从中随机一次摸出2个球,则这2个球中至少有1个白球的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知sin$α=\frac{1}{3}$,α是第二象限角,则sin2α+cos2α=(  )
A.$\frac{7-4\sqrt{2}}{9}$B.$\frac{2\sqrt{2}-1}{3}$C.$\frac{7-3\sqrt{2}}{9}$D.$\frac{2\sqrt{3}-1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某保险公司有款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(1)试估计这款保险产品的收益率的平均值;
(Ⅱ)设每份保单的保费在20元的基础上每增加x元,对应的销量y(万份),从历史销售记录中抽样得到如下5组x与y的对应数据:
X(元)2530384552
销售量y(万份)7.57.16.05.64.8
由上表,知x与y有较强的线性相关关系,且据此计算出的回归方程为$\widehat{y}$=10.0-bx.
(i)求参数b的估计值;
(ii)若把回归方程$\widehat{y}$=10.0-bx当作y与x的线性关系,用(Ⅰ)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出该最大利润.注:保险产品的保费收入=每份保单的保费×销量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an+1}是各项均正的等比数列,a1=1,a3=13-2a2则数列{an}的前n项和Sn为(  )
A.Sn=2n-2B.Sn=2n+1-2-nC.Sn=2n-1-nD.Sn=2n-1

查看答案和解析>>

同步练习册答案