精英家教网 > 高中数学 > 题目详情
5.数列{an+1}是各项均正的等比数列,a1=1,a3=13-2a2则数列{an}的前n项和Sn为(  )
A.Sn=2n-2B.Sn=2n+1-2-nC.Sn=2n-1-nD.Sn=2n-1

分析 数列{an+1}是各项均正的等比数列,公比设为q,q>0,运用等比数列的通项公式可得q的方程,解方程可得q,再由等比数列的求和公式计算即可得到所求和.

解答 解:数列{an+1}是各项均正的等比数列,公比设为q,q>0,
a1=1,a3=13-2a2
则an+1=2qn-1
即有an=2qn-1-1,
则2q2-1=13-2(2q-1),
解得q=2(-4舍去),
则an=2•2n-1-1=an=2n-1,
可得数列{an}的前n项和Sn为$\frac{2(1-{2}^{n})}{1-2}$-n
=2n+1-2-n,
故选:B.

点评 本题考查等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{f(x+1),(x≤0)}\\{{2}^{x},(x>0)}\end{array}\right.$,则f(-$\frac{3}{2}$)=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=|x-a|,a∈R.
(Ⅰ)当a=2时,求不等式f(x)+|2x-7|≥6的解集;
(Ⅱ)若函数g(x)=f(x)-|x-5|的值域为A,且[-1,2]⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设k是一个正整数,(1+$\frac{x}{k}$)k的展开式中第四项的系数为$\frac{1}{16}$,任取x∈[0,4],y∈[0,16],如图,则点(x,y)恰好落在函数y=x2与y=kx的图象所围成的阴影区域内的概率为(  )
A.$\frac{17}{96}$B.$\frac{5}{32}$C.$\frac{1}{6}$D.$\frac{7}{48}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,圆C的参数方程为$\left\{\begin{array}{l}{x=2(1+cosα)}\\{y=2sinα}\end{array}$(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的极坐标为(ρ0,$\frac{π}{2}$).
(1)求圆C的极坐标方程;
(2)过点P作圆C的切线,切点分别为A,B两点,且∠APB=120°,求ρ0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x+$\frac{1}{2}$,x∈R.
(1)若?x∈[$\frac{π}{12}$,$\frac{π}{2}$],f(x)-m=0有两个不同的根,求m的取值范围;
(2)已知△ABC的内角A、B、C的对边分别为a、b、c,若f(B)=$\frac{1}{2}$,b=2,且sinA、sinB、sinC成等差数列,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且$({a^2}+{b^2}-{c^2})sinC=\sqrt{3}abcosC$.
(1)求角C;
(2)若$c=\sqrt{3}$,求b-2a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tan95°=k,则tan35°=(  )
A.$\frac{\sqrt{3}-k}{1+\sqrt{3}k}$B.$\frac{k+\sqrt{3}}{1+\sqrt{3}k}$C.$\frac{k+\sqrt{3}}{1-\sqrt{3}k}$D.$\frac{k-\sqrt{3}}{1+\sqrt{3}k}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若(ax2+$\frac{1}{\sqrt{x}}$)5的展开式中x5的系数-270,则实数a=-3.

查看答案和解析>>

同步练习册答案