精英家教网 > 高中数学 > 题目详情
17.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且$({a^2}+{b^2}-{c^2})sinC=\sqrt{3}abcosC$.
(1)求角C;
(2)若$c=\sqrt{3}$,求b-2a的取值范围.

分析 (1)由余弦定理,得a2+b2-c2=2abcosC,从而$2abcosCsinC=\sqrt{3}abcosC$,进而$sinC=\frac{{\sqrt{3}}}{2}$,由此能求出C.
(2)由正弦定理,得$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\frac{{\sqrt{3}}}{{\frac{{\sqrt{3}}}{2}}}=2$,从而$b-2a=2\sqrt{3}cos({A+\frac{π}{3}})$,进而$\frac{π}{6}<A<\frac{π}{2}$,由此能求出b-2a的取值范围.

解答 解:(1)由余弦定理,可得a2+b2-c2=2abcosC,
∵$({a^2}+{b^2}-{c^2})sinC=\sqrt{3}abcosC$,
∴$2abcosCsinC=\sqrt{3}abcosC$,
∴$sinC=\frac{{\sqrt{3}}}{2}$,
又$0<C<\frac{π}{2}$,∴$C=\frac{π}{3}$.
(2)由正弦定理,$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\frac{{\sqrt{3}}}{{\frac{{\sqrt{3}}}{2}}}=2$,
∴$b-2a=2sinB-4sinA=2sin({\frac{2π}{3}-A})-4sinA=\sqrt{3}cosA-3sinA$,
$b-2a=2\sqrt{3}cos({A+\frac{π}{3}})$
∵△ABC是锐角三角形,
∴$\left\{\begin{array}{l}0<A<\frac{π}{2},\;\;\\ 0<\frac{2π}{3}-A<\frac{π}{2},\;\;\end{array}\right.$得$\frac{π}{6}<A<\frac{π}{2}$,
∴$\frac{π}{2}<A+\frac{π}{3}<\frac{5π}{6}$,$cos({A+\frac{π}{3}})∈({-\frac{{\sqrt{3}}}{2},\;\;0})$,
∴b-2a的取值范围是(-3,0).

点评 本题考查三角形的内角求法,考查三角形的边的代数式的取值范围的求法,考查同角三角函数关系式、正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知sin$α=\frac{1}{3}$,α是第二象限角,则sin2α+cos2α=(  )
A.$\frac{7-4\sqrt{2}}{9}$B.$\frac{2\sqrt{2}-1}{3}$C.$\frac{7-3\sqrt{2}}{9}$D.$\frac{2\sqrt{3}-1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}(n∈N*)是首项为20的等差数列,其公差d≠0,且a1,a4,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,当Sn>0时,求n的最大值;
(Ⅲ)设bn=5-$\frac{{a}_{n}}{4}$,求数列{$\frac{1}{{b}_{2n}{b}_{2n+2}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an+1}是各项均正的等比数列,a1=1,a3=13-2a2则数列{an}的前n项和Sn为(  )
A.Sn=2n-2B.Sn=2n+1-2-nC.Sn=2n-1-nD.Sn=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC的外接圆的半径为R,角A,B,C的对边分别为a,b,c,若asinBcosC+$\frac{3}{2}$csinC=$\frac{2}{R}$,则△ABC面积的最大值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,A,B,C所对的边分别为a,b,c,${sin^2}\frac{A-B}{2}+sinAsinB=\frac{{2+\sqrt{2}}}{4}$.
(1)求角C的大小;
(2)若c=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一位同学家里订了一份报纸,送报人每天早上6:20-7:40之间将报纸送达,该同学需要早上7:00-8:00之间出发上学,则这位同学在离开家之前能拿到报纸的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,-4),则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.$\sqrt{5}$B.-$\sqrt{5}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列叙述错误的是(  )
A.若事件A发生的概率为 P (A),则 0≤P(A)≤1
B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件
C.5 张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同
D.某事件发生的概率是随着试验次数的变化而变化的

查看答案和解析>>

同步练习册答案