精英家教网 > 高中数学 > 题目详情
15.已知sin$α=\frac{1}{3}$,α是第二象限角,则sin2α+cos2α=(  )
A.$\frac{7-4\sqrt{2}}{9}$B.$\frac{2\sqrt{2}-1}{3}$C.$\frac{7-3\sqrt{2}}{9}$D.$\frac{2\sqrt{3}-1}{3}$

分析 根据已知及二倍角公式,可先求cosα的值,从而可求sin2α,cos2α的值,即可计算得解.

解答 解:∵sinα=$\frac{1}{3}$,α为第二象限角,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴sin2α=2sinαcosα=2×$\frac{1}{3}×$(-$\frac{2\sqrt{2}}{3}$)=-$\frac{4\sqrt{2}}{9}$,cos2α=1-2sin2α=$\frac{7}{9}$,
∴sin2α+cos2α=$\frac{7}{9}$-$\frac{4\sqrt{2}}{9}$=$\frac{7-4\sqrt{2}}{9}$.
故选:A.

点评 本题主要考察了二倍角公式,同角三角函数关系式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知过曲线y=(ax+b)ex上的一点P(0,1)的切线方程为2x-y+1=0,则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若cos(α$+\frac{4π}{15}$)=$\frac{4}{5}$,则sin(2α$+\frac{31π}{30}$)=(  )
A.$\frac{3}{5}$B.$\frac{7}{25}$C.$\frac{3}{4}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{f(x+1),(x≤0)}\\{{2}^{x},(x>0)}\end{array}\right.$,则f(-$\frac{3}{2}$)=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{b}^{2}}=1$(b>0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线方程为(  )
A.$\frac{{x}^{2}}{4}-\frac{3{y}^{2}}{4}=1$B.$\frac{{x}^{2}}{4}-\frac{4{y}^{2}}{3}=1$C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{8}=1$D.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定积分${∫}_{0}^{3}$$\sqrt{9-{x}^{2}}$dx的值是(  )
A.B.$\frac{9π}{2}$C.$\frac{9}{4}$πD.$\frac{9}{8}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=0.92,b=20.9,c=log20.9,则a,b,c的大小关系为(  )
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=|x-a|,a∈R.
(Ⅰ)当a=2时,求不等式f(x)+|2x-7|≥6的解集;
(Ⅱ)若函数g(x)=f(x)-|x-5|的值域为A,且[-1,2]⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且$({a^2}+{b^2}-{c^2})sinC=\sqrt{3}abcosC$.
(1)求角C;
(2)若$c=\sqrt{3}$,求b-2a的取值范围.

查看答案和解析>>

同步练习册答案