精英家教网 > 高中数学 > 题目详情
14.已知tan95°=k,则tan35°=(  )
A.$\frac{\sqrt{3}-k}{1+\sqrt{3}k}$B.$\frac{k+\sqrt{3}}{1+\sqrt{3}k}$C.$\frac{k+\sqrt{3}}{1-\sqrt{3}k}$D.$\frac{k-\sqrt{3}}{1+\sqrt{3}k}$

分析 利用诱导公式求得tan5°的值,再利用两角和的正切公式,求得tan35°=tan(30°+5°)的值.

解答 解:∵tan95°=k=tan(90°+5°)=-$\frac{1}{tan5°}$,∴tan5°=-$\frac{1}{k}$,
则tan35°=tan(30°+5°)=$\frac{tan30°+tan5°}{1-tan30°•tan5°}$=$\frac{\frac{\sqrt{3}}{3}-\frac{1}{k}}{1-\frac{\sqrt{3}}{3}•(-\frac{1}{k})}$=$\frac{k-\sqrt{3}}{\sqrt{3}•k+1}$,
故选:D.

点评 本题主要考查诱导公式、两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某保险公司有款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
(1)试估计这款保险产品的收益率的平均值;
(Ⅱ)设每份保单的保费在20元的基础上每增加x元,对应的销量y(万份),从历史销售记录中抽样得到如下5组x与y的对应数据:
X(元)2530384552
销售量y(万份)7.57.16.05.64.8
由上表,知x与y有较强的线性相关关系,且据此计算出的回归方程为$\widehat{y}$=10.0-bx.
(i)求参数b的估计值;
(ii)若把回归方程$\widehat{y}$=10.0-bx当作y与x的线性关系,用(Ⅰ)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出该最大利润.注:保险产品的保费收入=每份保单的保费×销量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an+1}是各项均正的等比数列,a1=1,a3=13-2a2则数列{an}的前n项和Sn为(  )
A.Sn=2n-2B.Sn=2n+1-2-nC.Sn=2n-1-nD.Sn=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,A,B,C所对的边分别为a,b,c,${sin^2}\frac{A-B}{2}+sinAsinB=\frac{{2+\sqrt{2}}}{4}$.
(1)求角C的大小;
(2)若c=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一位同学家里订了一份报纸,送报人每天早上6:20-7:40之间将报纸送达,该同学需要早上7:00-8:00之间出发上学,则这位同学在离开家之前能拿到报纸的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.
甲说:我在1日和3日都有值班;
乙说:我在7日和8日都有值班;
丙说:我们三人各自值班的日期之和相等,据此可判断丙必定值班的日期是(  )
A.2日和5日B.5日和6日C.6日和11日D.4日和11日

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,-4),则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.$\sqrt{5}$B.-$\sqrt{5}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在新媒体时代,酒香也怕巷子深,宣传是让大众最快了解自己产品的最有效的手段,已知某种产品的宣传费用x与销售总额y的统计数据如下表所示:
宣传费用x万元2345
销售总额y万元26394954
根据上表求得的回归方程$\widehat{y}$=9.4x+$\widehat{a}$,据此模型预测宣传费用为6万元时销售额为(  )
A.63.6万元B.65.5万元C.67.7万元D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,ABCDEF是圆心为O,半径为1的圆内接正六边形,将一颗豆子随机地扔到该圆内,用M表示事件“豆子落在正六边形内”,用N表示事件“豆子落在扇形AOF内(阴影部分)”,则P(N|M)=(  )
A.$\frac{1}{3}$B.$\frac{1}{3π}$C.$\frac{1}{6}$D.$\frac{1}{6π}$

查看答案和解析>>

同步练习册答案