精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系中,圆C的参数方程为$\left\{\begin{array}{l}{x=2(1+cosα)}\\{y=2sinα}\end{array}$(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的极坐标为(ρ0,$\frac{π}{2}$).
(1)求圆C的极坐标方程;
(2)过点P作圆C的切线,切点分别为A,B两点,且∠APB=120°,求ρ0

分析 (1)先求出圆的普通方程,再转化为极坐标方程;(2)结合图象求出PA的长,从而求出ρ0的值即可.

解答 解:(1)圆的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,
∴圆C的极坐标方程为ρ2-4ρcosθ=0,即ρ=4cosθ.
(2)已知点P的极坐标为(ρ0,$\frac{π}{2}$),
故P在y轴上,
画出圆在直角坐标系中的图象,如图所示:

若P在y轴的上方,由∠APB=120°,
得∠AOP=30°,则tan∠AOP=$\frac{AP}{OA}$=$\frac{AP}{2}$=$\frac{\sqrt{3}}{3}$,
解得:AP=$\frac{2\sqrt{3}}{3}$,
故ρ0=$\frac{2\sqrt{3}}{3}$,
若P在y轴的下方,则ρ0=-$\frac{2\sqrt{3}}{3}$.

点评 本题考查了参数方程,极坐标方程与普通方程的转化,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函数f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求函数f(x)的单调递增区间;
(2)当x∈(0,$\frac{π}{2}$)时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.写出命题“若x2=4,则x=2或x=-2”的否命题为“若x2≠4,则x≠2且x≠-2”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}(n∈N*)是首项为20的等差数列,其公差d≠0,且a1,a4,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,当Sn>0时,求n的最大值;
(Ⅲ)设bn=5-$\frac{{a}_{n}}{4}$,求数列{$\frac{1}{{b}_{2n}{b}_{2n+2}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)及其导函数f′(x)的图象为图中四条光滑曲线中的两条,则f(x)的递增区间为(  )
A.(1,+∞)B.(-∞,2)C.(0,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an+1}是各项均正的等比数列,a1=1,a3=13-2a2则数列{an}的前n项和Sn为(  )
A.Sn=2n-2B.Sn=2n+1-2-nC.Sn=2n-1-nD.Sn=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC的外接圆的半径为R,角A,B,C的对边分别为a,b,c,若asinBcosC+$\frac{3}{2}$csinC=$\frac{2}{R}$,则△ABC面积的最大值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一位同学家里订了一份报纸,送报人每天早上6:20-7:40之间将报纸送达,该同学需要早上7:00-8:00之间出发上学,则这位同学在离开家之前能拿到报纸的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四面体ABCD中,△ABC是边长为2的正三角形,AD=CD=$\sqrt{2}$,E为BD上一点.
(Ⅰ)证明:平面ACD⊥平面ABC;
(Ⅱ)若二面角D-AE-C的所成角的平面角的余弦值为$\frac{4}{7}$,求BE的长.

查看答案和解析>>

同步练习册答案