精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)及其导函数f′(x)的图象为图中四条光滑曲线中的两条,则f(x)的递增区间为(  )
A.(1,+∞)B.(-∞,2)C.(0,+∞)D.($\frac{1}{2}$,+∞)

分析 根据图象判断出f(x)以及f′(x) 图象,根据图象求出函数的递增区间即可.

解答 解:结合图象f(x)的图象是c2,f′(x)的图象是c1
故f(x)在($\frac{1}{2}$,+∞)递增,
故选:D.

点评 本题考查了数形结合思想,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=$\frac{{\sqrt{3}}}{2}-\sqrt{3}{sin^2}$ωx-sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为$\frac{π}{4}$,则f(x)在区间$[-\frac{π}{4},0]$上的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{\frac{lnx}{x},x≥1}\\{-{x}^{3}+1,x<1}\end{array}\right.$,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(-∞,0]C.(-∞,$\frac{1}{e}$)D.[$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设i是虚数单位,若$\frac{z}{1-i}$=2+i,则复数z的共轭复数是(  )
A.1+iB.2+iC.3-iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a<b<0,则下列不等式中错误的是(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.$\frac{1}{a-b}$>$\frac{1}{b}$C.|a|>|b|D.a2>ab

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,圆C的参数方程为$\left\{\begin{array}{l}{x=2(1+cosα)}\\{y=2sinα}\end{array}$(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的极坐标为(ρ0,$\frac{π}{2}$).
(1)求圆C的极坐标方程;
(2)过点P作圆C的切线,切点分别为A,B两点,且∠APB=120°,求ρ0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\frac{si{n}^{2}x}{3}$+$\frac{3}{si{n}^{2}x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.方程ax2+bx=0(a≠0),必有一根为0;ax2+c=0(a≠0)中,a、c异号,则方程的根为±$\sqrt{-\frac{c}{a}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,以坐标原点O为极点,以x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ=8cosθ+10sinθ.
(1)求曲线C的直角坐标方程及参数方程;
(2)若点P(x,y)为曲线C上任意一点,求证:x+y的最大值大于18.

查看答案和解析>>

同步练习册答案