精英家教网 > 高中数学 > 题目详情
18.若a<b<0,则下列不等式中错误的是(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.$\frac{1}{a-b}$>$\frac{1}{b}$C.|a|>|b|D.a2>ab

分析 利用不等式的基本性质即可得出.

解答 解:∵a<b<0,∴$\frac{1}{a}$$>\frac{1}{b}$,|a|>|b|,a2>ab.
因此A,C,D正确.
对于B:只有0>b>a时,可得$\frac{1}{a-b}>$$\frac{1}{b}$,因此B不正确.
故选:B.

点评 本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.圆C1:x2+y2+2x+6y+6=0,圆C2:x2+y2-4x-2y+4=0,Q,P都是到两圆的切线长相等的两点,若直线QP将两圆的圆心连线分成的两段长分别为m,n(m>n),则$\frac{m}{n}$=$\frac{14}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.五个人排成一排,其中甲、乙两人必须排在一起,丙、丁两人不能排在一起,则不同的排法共有(  )
A.48种B.24种C.20种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在极坐标系中,圆ρ=2cosθ的圆心的极坐标是(  )
A.(1,$\frac{π}{2}$)B.(1,-$\frac{π}{2}$)C.(1,π)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求直角坐标系下曲线C1与曲线C2的方程;
(Ⅱ)设P为曲线C1上的动点,求点P到C2上点的距离的最大值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)及其导函数f′(x)的图象为图中四条光滑曲线中的两条,则f(x)的递增区间为(  )
A.(1,+∞)B.(-∞,2)C.(0,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线右支上的一点,△POF1为等腰三角形,过点P作y轴的垂线,延长后交双曲线的左支于点Q,若$\overrightarrow{PQ}$=$\frac{1}{2}$$\overrightarrow{{F}_{2}{F}_{1}}$,则双曲线离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2sinxcosx+$\frac{cos2x}{2}$+3sin2x$+\frac{1}{2}$,x∈R
(Ⅰ)求函数f(x)的最小正周期
(Ⅱ)求函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案