精英家教网 > 高中数学 > 题目详情
6.在极坐标系中,圆ρ=2cosθ的圆心的极坐标是(  )
A.(1,$\frac{π}{2}$)B.(1,-$\frac{π}{2}$)C.(1,π)D.(1,0)

分析 先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,将极坐标方程转化为直角坐标方程,求出坐标即可.

解答 解:圆ρ=2cosθ的直角坐标方程为:x2+y2-2x=0,其圆心(1,0),
点(1,0)的极坐标为(1,0),
故选:D.

点评 本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y,则(  )
A.z的最小值为3,z无最大值B.z的最小值为1,最大值为3
C.z的最小值为1,z无最大值D.z的最大值为3,z无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知方程a-x2=-2lnx在区间[$\frac{1}{e}$,e]上有解(其中e为自然对数的底数),则实数a的取值范围是(  )
A.[1,$\frac{1}{{e}^{2}}$+2]B.[1,e2-2]C.[$\frac{1}{{e}^{2}}$+2,e2-2]D.[e2-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{\frac{lnx}{x},x≥1}\\{-{x}^{3}+1,x<1}\end{array}\right.$,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(-∞,0]C.(-∞,$\frac{1}{e}$)D.[$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数x成立,则称f(x)是回旋函数,且阶数为a.
(1)试判断函数f(x)=sinπx是否是一个阶数为1的回旋函数,并说明理由;
(2)已知f(x)=sinωx是回旋函数,求实数ω的值;
(3)若回旋函数f(x)=sinωx-1(ω>0)在[0,1]恰有100个零点,求实数ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设i是虚数单位,若$\frac{z}{1-i}$=2+i,则复数z的共轭复数是(  )
A.1+iB.2+iC.3-iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a<b<0,则下列不等式中错误的是(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.$\frac{1}{a-b}$>$\frac{1}{b}$C.|a|>|b|D.a2>ab

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\frac{si{n}^{2}x}{3}$+$\frac{3}{si{n}^{2}x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象的两条相邻对称轴之间的距离为$\frac{π}{2}$,且图象上一个最低点为M($\frac{2}{3}$π,-1).
(1)求函数f(x)的解析式;
(2)当x∈[$\frac{π}{8}$,$\frac{π}{2}$]时,求函数f(x)的值域;
(3)若方程f(x)=$\frac{2}{3}$在x∈[0,$\frac{π}{3}$]上有两个不相等的实数根x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

同步练习册答案