精英家教网 > 高中数学 > 题目详情
13.若X~B(n,$\frac{1}{3}$),且D(X)=$\frac{2}{3}$,则P(0≤X≤2)等于(  )
A.$\frac{1}{9}$B.$\frac{8}{9}$C.$\frac{26}{27}$D.$\frac{1}{27}$

分析 由二项分布性质求出n=3,由此利用对立事件概率计算公式能求出结果.

解答 解:∵X~B(n,$\frac{1}{3}$),且D(X)=$\frac{2}{3}$,
∴$n×\frac{1}{3}×(1-\frac{1}{3})$=$\frac{2}{3}$,解得n=3,
P(0≤X≤2)=1-P(X=3)=1-($\frac{1}{3}$)3=$\frac{26}{27}$.
故选:C.

点评 本题考查概率的求法及应用,是基础题,解题时要认真审题,注意二项分布及对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin($\frac{π}{3}$-2x)的单调递增区间是(  )
A.[-kπ-$\frac{π}{12}$,-kπ+$\frac{5π}{12}$],k∈ZB.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$(\frac{1}{2})^{|x+m-1|}$是偶函数,g(x)=$\left\{\begin{array}{l}{f(x)}&{x≥0}\\{{x}^{2}+2x+m}&{x<0}\end{array}\right.$,则方程g(x)=|x+$\frac{3}{4}$|实数根的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果对定义在区间D上的函数f(x),对区间D内任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x${\;}_{{\;}_{1}}$f(x2)+x2f(x1),则称函数f(x)为区间D上的“H函数”,给出下列函数及函数对应的区间
①y=$\frac{1}{3}$x3-$\frac{1}{2}$x2+$\frac{1}{2}$x,(x∈R)
②y=3x+cosx-sinx,x∈(0,$\frac{π}{2}$)
③f(x)=(x+1)e-x,x∈(-∞,1)
④f(x)=xlnx,x∈(0,$\frac{1}{e}$)
以上函数为区间D上的“H函数”的序号是①②(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=(x2-ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则a等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{-x+4a,x<0}\\{{a}^{x}+1,x≥0}\end{array}\right.$(a>0且a≠1)是R上的减函数,则a的取值范围是(  )
A.(0,1)B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{sin(\frac{π}{2}-x)cos(2π-x)tan(-x+5π)}{tan(π+x)sin(\frac{π}{2}+x)}$,则f($-\frac{43π}{3}$)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$-\frac{\sqrt{3}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函数f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求函数f(x)的单调递增区间;
(2)当x∈(0,$\frac{π}{2}$)时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.写出命题“若x2=4,则x=2或x=-2”的否命题为“若x2≠4,则x≠2且x≠-2”.

查看答案和解析>>

同步练习册答案