| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 求出f′(x)=(x2-ax+2x+1)ex,设t=2-a,g(x)=x2+tx+1,则g(1)•g(3)=(t+2)(3t+10)<0,由此能求出a.
解答 解:∵函数f(x)=(x2-ax+a+1)ex(a∈N),
∴f′(x)=(x2-ax+2x+1)ex,
设t=2-a,g(x)=x2+tx+1,
由题意得g(x)在(1,3)内只有1个零点,
∴g(1)•g(3)=(t+2)(3t+10)<0,
解得-$\frac{10}{3}<t<-2$,
∴4<a<$\frac{16}{3}$,
∵a∈N,∴a=5.
故选:D.
点评 本题考查实数值的求法,是中档题,解题时要认真审题,注意导数性质、构造法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 2π | C. | $\frac{π}{2}$ | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $\frac{8}{9}$ | C. | $\frac{26}{27}$ | D. | $\frac{1}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | z的最小值为3,z无最大值 | B. | z的最小值为1,最大值为3 | ||
| C. | z的最小值为1,z无最大值 | D. | z的最大值为3,z无最小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$) | B. | (-∞,0] | C. | (-∞,$\frac{1}{e}$) | D. | [$\frac{1}{e}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com