精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(sin2x,cos2x),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,则函数f(x)的最小正周期为(  )
A.πB.C.$\frac{π}{2}$D.

分析 利用平面向量的数量积公式与和角公式化简f(x),根据周期公式得出结论.

解答 解:f(x)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
∴f(x)的最新正周期为T=$\frac{2π}{2}$=π.
故选A.

点评 本题考查了平面向量的数量积运算,正弦函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.△ABC的内角A、B、C的对边分别为a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求C;
(2)若b=1,c=$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设△ABC的内角A,B,C,已知C=$\frac{π}{3}$,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,则△ABC的内角A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(2cosωx,1),$\overrightarrow{b}$=($\sqrt{3}$sinωx-cosωx,1)(ω>0),函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,若函数f(x)的图象与x轴的两个相邻交点的距离为$\frac{π}{2}$
(1)求函数f(x)的单调增区间
(2)若x∈($\frac{7π}{12}$,$\frac{5π}{6}$)时,f(x)=-$\frac{6}{5}$,求cos2x的值
(3)若cosx$≥\frac{1}{2}$,x∈(0,π),且f(2x)=m有且仅有一个实根,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{2}{3}$x3-2ax2-3x
(1)当a=0时,求曲线y=f(x)在点(3,f(3))的切线方程
(2)对一切x∈(0,+∞),af′(x)+4a2x≥lnx-3a-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$(\frac{1}{2})^{|x+m-1|}$是偶函数,g(x)=$\left\{\begin{array}{l}{f(x)}&{x≥0}\\{{x}^{2}+2x+m}&{x<0}\end{array}\right.$,则方程g(x)=|x+$\frac{3}{4}$|实数根的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.甲、乙、丙3人从1楼乘电梯去商场的3到9楼,每层楼最多下2人,则下电梯的方法有(  )
A.210种B.84种C.343种D.336种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=(x2-ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则a等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}中,an+1=2+$\sqrt{4{a}_{n}-{{a}_{n}}^{2}}$,则a1+a2018的最大值为(  )
A.2B.4C.4-2$\sqrt{2}$D.4+2$\sqrt{2}$

查看答案和解析>>

同步练习册答案