精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{2}{3}$x3-2ax2-3x
(1)当a=0时,求曲线y=f(x)在点(3,f(3))的切线方程
(2)对一切x∈(0,+∞),af′(x)+4a2x≥lnx-3a-1恒成立,求实数a的取值范围.

分析 (1)求导数,利用导数的几何意义,求出切线的斜率,即可求曲线y=f(x)在点(3,f(3))的切线方程;
(2)由题意:2ax2+1≥lnx,即a≥$\frac{lnx-1}{{2x}^{2}}$,求出右边的最大值,即可求实数a的取值范围;

解答 解:(1)由题意知f(x)=$\frac{2}{3}$x3-3x,所以f′(x)=2x2-3,
又f(3)=9,f′(3)=15,
所以曲线y=f(x)在点(3,f(3))的切线方程为15x-y-36=0;
(2)由题意:2ax2+1≥lnx,即a≥$\frac{lnx-1}{{2x}^{2}}$,
设g(x)=$\frac{lnx-1}{{2x}^{2}}$,则g′(x)=$\frac{3-2lnx}{{2x}^{3}}$,
当0<x<${e}^{\frac{3}{2}}$时,g'(x)>0;当x>${e}^{\frac{3}{2}}$时,g′(x)<0,
所以当x=${e}^{\frac{3}{2}}$时,g(x)取得最大值g(x)max=$\frac{1}{{4e}^{3}}$,
故实数a的取值范围为[$\frac{1}{{4e}^{3}}$,+∞).

点评 本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与极值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的时间为6min,则客船在静水中的速度为(
A.6$\sqrt{2}$km/hB.8km/hC.2$\sqrt{34}$km/hD.10km/h

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.长度为5的木棒AB上任选一处截成两段,这两段木棒能够与另一根长度为2的木首棒首尾相连,组成一个三角形的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且$sinA=\sqrt{6}sinC$,$c=\sqrt{3}$.
(Ⅰ)求a的值;
(Ⅱ)如果$cosA=\frac{{\sqrt{3}}}{3}$,求b的值及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平行四边形ABCD中,已知AB=4,AD=3,$\overrightarrow{CP}=3\overrightarrow{PD}$,$\overrightarrow{AP}•\overrightarrow{BP}=2$,则$\overrightarrow{AB}•\overrightarrow{AD}$的值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(sin2x,cos2x),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,则函数f(x)的最小正周期为(  )
A.πB.C.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.电视台与某企业签订了播放两套连续剧的合作合同.约定每集电视连续剧播出后,另外播出2分钟广告.已知连续剧甲每集播放80分钟,收视观众为60万,连续剧乙每集播放40分钟,收视观众为20万,根据合同,要求电视台每周至少播放12分钟广告,而电视剧播放时间每周不多于320分钟,设每周播放甲乙两套电视剧分别为x集、y集.
(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)电视台每周应播映两套连续剧各多少集,才能使收视观众最多,最高收视观众有多少万人?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若{an}是正项等比数列,已知a2=1,那么前3项之和S3的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两条直线l1:y=3,l2:y=$\frac{2}{m-1}$(2≤m≤6),l1与函数y=|log2x|的图象从左到右交于A,B两点,l2与函数y=|log2x|的图象从左到右交于C,D两点,若a=|$\frac{\overrightarrow{AC}•\overrightarrow{AB}}{|\overrightarrow{AB}|}$|,b=|$\frac{\overrightarrow{BD}•\overrightarrow{CD}}{|\overrightarrow{CD}|}$|,当m变化时,$\frac{b}{a}$的范围是(  )
A.(2${\;}^{\frac{2}{5}}$,4)B.[2${\;}^{\frac{2}{5}}$,4]C.[2${\;}^{\frac{17}{5}}$,32]D.(2${\;}^{\frac{17}{5}}$,32)

查看答案和解析>>

同步练习册答案