精英家教网 > 高中数学 > 题目详情
5.长度为5的木棒AB上任选一处截成两段,这两段木棒能够与另一根长度为2的木首棒首尾相连,组成一个三角形的概率为$\frac{2}{5}$.

分析 根据题意,先设其中两段的长度分别为x、y,可得第三段的长,进而分别表示出木棒随机地折成3段的x,y的约束条件和3段构成三角形的约束条件,再画出约束条件表示的平面区域并计算其面积,由几何概型公式,计算可得答案

解答 解:设长度为5的木棒AB上任选一处截成两段,这两段的长度分别为,x,y则x+y=5,得到0<x<5,
这两段木棒能够与另一根长度为2的木首棒首尾相连,则x+y>2,|x-y|<2,
解得1.5<x<3.5,
由几何概型得到所求概率为:$\frac{3.5-1.5}{5}=\frac{2}{5}$;
故答案为:$\frac{2}{5}$

点评 本题考查几何概型,解题的关键是根据题意,结合三角形的三边关系,准确分析截成两段x,y的之间关系,进而求出其区间长度,利用区间长度比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(  )
A.0.312B.0.36C.0.432D.0.648

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列几种推理过程是演绎推理的是(  )
A.比较5和ln3的大小
B.由平面三角形的性质,推测空间四面体的性质
C.某高中高二年级有15个班级,1班有51人,2班有53人,3班52人,由此推测各班都超过50人
D.由股票趋势图预测股价

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$sin2x+cos2x
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{b}$|=2.
(1)若<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,求$\overrightarrow{a}$•$\overrightarrow{b}$和|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求向量$\overrightarrow{b}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设△ABC的内角A,B,C,已知C=$\frac{π}{3}$,若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,则△ABC的内角A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z=$\frac{1+5i}{5-i}$=(  )
A.-1+iB.-1-iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{2}{3}$x3-2ax2-3x
(1)当a=0时,求曲线y=f(x)在点(3,f(3))的切线方程
(2)对一切x∈(0,+∞),af′(x)+4a2x≥lnx-3a-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的一个焦点坐标是(  )
A.(0,2)B.(2,0)C.($\sqrt{14}$,0)D.(0,$\sqrt{14}$)

查看答案和解析>>

同步练习册答案