分析 由向量故选的坐标表示和正弦定理可得b=2a,再由余弦定理可得c=$\sqrt{3}$a,再由余弦定理,即可得到A.
解答 解:若向量$\overrightarrow{m}$=(1,sinA)与向量$\overrightarrow{n}$=(2,sinB)共线,
可得sinB=2sinA,
由正弦定理可得b=2a,
C=$\frac{π}{3}$,由余弦定理可得c2=a2+b2-2abcosC
=a2+4a2-4a2•$\frac{1}{2}$=3a2,
即c=$\sqrt{3}$a,
再由余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4{a}^{2}+3{a}^{2}-{a}^{2}}{4\sqrt{3}{a}^{2}}$=$\frac{\sqrt{3}}{2}$,
由A为三角形的内角,可得A=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.
点评 本题考查向量共线的坐标表示,以及解三角形的正弦定理、余弦定理的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{5}{2}$ | C. | $\frac{\sqrt{10}}{2}$ | D. | $\frac{\sqrt{13}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 2π | C. | $\frac{π}{2}$ | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | z的最小值为3,z无最大值 | B. | z的最小值为1,最大值为3 | ||
| C. | z的最小值为1,z无最大值 | D. | z的最大值为3,z无最小值 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com