精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\sqrt{3}$sin2x+cos2x
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

分析 (1)当x∈[0,$\frac{π}{2}$]时,利用两角和的正弦公式化简函数的解析式,再利用正弦函数的单调性,求得函数f(x)的单调递增区间.
(2)利用三角恒等变换化简g(x)的解析式,再利用余弦函数的定义域和值域,二次函数的性质,求得它的值域.

解答 解:(1)∵函数f(x)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,
求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函数的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
再根据x∈[0,$\frac{π}{2}$]时,可得函数的增区间为[0,$\frac{π}{6}$].
(2)函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1=$\frac{1}{2}$•4${sin}^{2}(2x+\frac{π}{6})$-2sin(2x+$\frac{π}{2}$+$\frac{π}{6}$)-1
=2${sin}^{2}(2x+\frac{π}{6})$-2cos(2x+$\frac{π}{6}$)-1
=-2•${cos}^{2}(2x+\frac{π}{6})$-2cos(2x+$\frac{π}{6}$)+1=-2•${[cos(2x+\frac{π}{6})+\frac{1}{2}]}^{2}$+$\frac{3}{2}$.
∵x∈[-$\frac{π}{6}$,$\frac{π}{3}$],∴2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],∴cos(2x+$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],
故当cos(2x+$\frac{π}{6}$)=-$\frac{1}{2}$时,g(x)取得最大值为$\frac{3}{2}$;
当cos(2x+$\frac{π}{6}$)=1时,g(x)取得最小值为-3,
故函数g(x)的值域为[-3,$\frac{3}{2}$].

点评 本题主要考查两角和的正弦公式,正弦函数的单调性,三角恒等变换,余弦函数的定义域和值域,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.点P(0,2)到直线$\sqrt{3}x+y-4=0$的距离是(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的时间为6min,则客船在静水中的速度为(
A.6$\sqrt{2}$km/hB.8km/hC.2$\sqrt{34}$km/hD.10km/h

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知$\sqrt{3}asinC-c({2+cosA})=0$,其中角A、B、C所对的边分别为a、b、c.求
(1)求角A的大小;
(2)若△ABC的最大边的边长为$\sqrt{13}$,且sinC=3sinB,求最小边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC的内角A,B,C的对边分别为a,b,c,且 a=b,sin2B=2sinAsinC则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x+$\frac{a}{x}$+a2-2,a∈R
(Ⅰ)若f(x)是奇函数,且在区间(0,+∞)上是增函数,求a的值
(Ⅱ)设g(x)=f(1)-a2+|log8(x+1)|,若g(x)在区间(-1,1)内有两个不同的零点m,n,求a的取值范围,并求$\frac{1}{m}$$+\frac{1}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.长度为5的木棒AB上任选一处截成两段,这两段木棒能够与另一根长度为2的木首棒首尾相连,组成一个三角形的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且$sinA=\sqrt{6}sinC$,$c=\sqrt{3}$.
(Ⅰ)求a的值;
(Ⅱ)如果$cosA=\frac{{\sqrt{3}}}{3}$,求b的值及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若{an}是正项等比数列,已知a2=1,那么前3项之和S3的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案