精英家教网 > 高中数学 > 题目详情
8.已知△ABC的内角A,B,C的对边分别为a,b,c,且 a=b,sin2B=2sinAsinC则cosB=$\frac{1}{4}$.

分析 由正弦定理得b2=2ac,从而a=b=2c,由此利用余弦定理能求出cosB.

解答 解:∵△ABC的内角A,B,C的对边分别为a,b,c,且 a=b,sin2B=2sinAsinC,
∴由正弦定理得b2=2ac,
∴a=b=2c,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{c}^{2}}{2ac}$=$\frac{c}{2a}$=$\frac{c}{4c}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查角的余弦值的求法,考查正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知O为坐标原点,对于函数f(x)=asinx+bcosx,称向量$\overrightarrow{OM}=(a,b)$为函数f(x)的伴随向量,同时称函数f(x)为向量$\overrightarrow{OM}$的伴随函数.
(Ⅰ)设函数$g(x)=-sin(\frac{3π}{2}-x)+\sqrt{3}sin(π+x)$,试求g(x)的伴随向量$\overrightarrow{OM}$;
(Ⅱ)记向量$\overrightarrow{ON}=(1,2)$的伴随函数为f(x),求当$f(x)=\frac{{4\sqrt{5}}}{5}$且$x∈(0,\frac{π}{2})$时sinx的值;
(Ⅲ)由(Ⅰ)中函数g(x)的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移$\frac{2π}{3}$个单位长度得到h(x)的图象.已知A(-2,3)B(2,6),问在y=h(x)的图象上是否存在一点P,使得$\overrightarrow{AP}⊥\overrightarrow{BP}$.若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$).若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(1)求f(x)递增区间;
(2)△ABC中,角A,B,C的对边分别是a,b,c,且(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列几种推理过程是演绎推理的是(  )
A.比较5和ln3的大小
B.由平面三角形的性质,推测空间四面体的性质
C.某高中高二年级有15个班级,1班有51人,2班有53人,3班52人,由此推测各班都超过50人
D.由股票趋势图预测股价

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的三个内角A,B,C的对边分别是a,b,c,且bcosC+ccosB=2acosB.
(1)求角B.
(2)若$b=\sqrt{13}$,△ABC的周长为$\sqrt{13}+7$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$sin2x+cos2x
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{b}$|=2.
(1)若<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,求$\overrightarrow{a}$•$\overrightarrow{b}$和|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求向量$\overrightarrow{b}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z=$\frac{1+5i}{5-i}$=(  )
A.-1+iB.-1-iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题p:?x>0,x2-x>0的否定形式为(  )
A.?x≤0,x2-x≤0B.?x>0,x2-x≤0C.?x≤0,x2-x≤0D.?x>0,x2-x≤0

查看答案和解析>>

同步练习册答案