精英家教网 > 高中数学 > 题目详情
13.已知O为坐标原点,对于函数f(x)=asinx+bcosx,称向量$\overrightarrow{OM}=(a,b)$为函数f(x)的伴随向量,同时称函数f(x)为向量$\overrightarrow{OM}$的伴随函数.
(Ⅰ)设函数$g(x)=-sin(\frac{3π}{2}-x)+\sqrt{3}sin(π+x)$,试求g(x)的伴随向量$\overrightarrow{OM}$;
(Ⅱ)记向量$\overrightarrow{ON}=(1,2)$的伴随函数为f(x),求当$f(x)=\frac{{4\sqrt{5}}}{5}$且$x∈(0,\frac{π}{2})$时sinx的值;
(Ⅲ)由(Ⅰ)中函数g(x)的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移$\frac{2π}{3}$个单位长度得到h(x)的图象.已知A(-2,3)B(2,6),问在y=h(x)的图象上是否存在一点P,使得$\overrightarrow{AP}⊥\overrightarrow{BP}$.若存在,求出P点坐标;若不存在,说明理由.

分析 (Ⅰ)化简g(x),求出g(x)的伴随向量即可;
(Ⅱ)根据$f(x)=\frac{{4\sqrt{5}}}{5}$,结合x的范围,求出sinx的值即可;
(Ⅲ)求出h(x)的解析式,表示出向量$\overrightarrow{AP}$,$\overrightarrow{BP}$,根据$\overrightarrow{AP}$•$\overrightarrow{BP}$=0,求出满足条件的P的坐标即可.

解答 解:(Ⅰ)∵$g(x)=-sin(\frac{3π}{2}-x)+\sqrt{3}sin(π+x)$,
∴$g(x)=cosx-\sqrt{3}sinx=-\sqrt{3}sinx+cosx$
∴g(x)的伴随向量$\overrightarrow{OM}=(-\sqrt{3},1)$-----------------------------------------------------------(3分)
(Ⅱ)∵$向量\overrightarrow{ON}=(1,2)$的伴随函数为f(x),且$f(x)=\frac{{4\sqrt{5}}}{5}$,
∴$f(x)=sinx+2cosx=\frac{{4\sqrt{5}}}{5}$
又∵$x∈(0,\frac{π}{2})$且sin2x+cos2x=1,
∴$sinx=\frac{{2\sqrt{5}}}{5}$----------------------------------------------(7分)
(Ⅲ)由(Ⅰ)知:$g(x)=-\sqrt{3}sinx+cosx=-2sin(x-\frac{π}{6})$(用余弦表示也可以)
将函数g(x)的图象(纵坐标不变)横坐标伸长为原来的2倍,得到函数$y=-2sin(\frac{1}{2}x-\frac{π}{6})$
再把整个图象向右平移$\frac{2π}{3}$个单位长得到h(x)的图象,
得到$h(x)=-2sin(\frac{1}{2}(x-\frac{2π}{3})-\frac{π}{6})=-2sin(\frac{1}{2}x-\frac{π}{2})=2cos\frac{1}{2}x$--------------------(8分)
设$P(x,2cos\frac{1}{2}x)$,∵A(-2,3)B(2,6),
∴$\overrightarrow{AP}=(x+2,2cos\frac{1}{2}x-3),\overrightarrow{BP}=(x-2,2cos\frac{1}{2}x-6)$
又∵$\overrightarrow{AP}⊥\overrightarrow{BP}$,∴$\overrightarrow{AP}•\overrightarrow{BP}=0$,
$\begin{array}{l}∴(x+2)(x-2)+(2cos\frac{1}{2}x-3)(2cos\frac{1}{2}x-6)=0\\{x^2}-4+4{cos^2}\frac{1}{2}x-18cos\frac{1}{2}x+18=0\end{array}$,
∴${(2cos\frac{1}{2}x-\frac{9}{2})^2}=\frac{25}{4}-{x^2}$(*)-----------------------------------------(10分)
$\begin{array}{l}∵-2≤2cos\frac{1}{2}x≤2$,∴$-\frac{13}{2}≤2cos\frac{1}{2}x-\frac{9}{2}≤-\frac{5}{2}\\∴\frac{25}{4}≤{(2cos\frac{1}{2}x-\frac{9}{2})^2}≤\frac{169}{4}\\ 又∵\frac{25}{4}-{x^2}≤\frac{25}{4}\end{array}$,
∴$当且仅当x=0时,{(2cos\frac{1}{2}x-\frac{9}{2})^2}和\frac{25}{4}-{x^2}同时等于\frac{25}{4}$,
这时(*)式成立,
∴$在y=h(x)的图象上存在点P(0,2),使得\overrightarrow{AP}⊥\overrightarrow{BP}$.--------------------(12分)

点评 本题考查了三角函数的图象和性质,考查了三角函数的诱导公式,训练了利用三角函数的单调性求函数的值域,体现了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E,F,G分另AC,BD,BC的中点,则下列命题中正确的是②③④.(将正确的命题序号全填上)
①EF∥AB;②EF是异面直线AC与BD的公垂线;
③CD∥平面EFG;④AC垂直于截面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线m,n与平面α,β,γ满足α⊥β,α∩β=m,n⊥α,n?γ,则下列判断一定正确的是(  )
A.m∥n,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.四位同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下结论:
①y与x负相关且$\widehat{y}$=-2.756x+7.325;
②y与x负相关且$\widehat{y}$=3.476x+5.648;
③y与x正相关且$\widehat{y}$=-1.226x-6.578;
④y与x正相关且$\widehat{y}$=8.967x+8.163.
其中一定不正确的结论的序号是(  )
A.①②B.②③C.③④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.盒中装有10只乒乓球,其中6只新球,4只旧球,任意摸出2个球使用,已知其中一个是新球的条件下,另一个也是新球的概率为(  )
A.$\frac{5}{13}$B.$\frac{5}{18}$C.$\frac{1}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.点P(0,2)到直线$\sqrt{3}x+y-4=0$的距离是(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=(  )
A.{1,-3}B.{1,5}C.{1,0}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)•sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求实数a的最大值和最小值;
(Ⅲ)若当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC的内角A,B,C的对边分别为a,b,c,且 a=b,sin2B=2sinAsinC则cosB=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案