精英家教网 > 高中数学 > 题目详情
8.盒中装有10只乒乓球,其中6只新球,4只旧球,任意摸出2个球使用,已知其中一个是新球的条件下,另一个也是新球的概率为(  )
A.$\frac{5}{13}$B.$\frac{5}{18}$C.$\frac{1}{3}$D.$\frac{5}{9}$

分析 设事件A表示“第一次摸出新球”,事件B表示“第二次摸出新球”,分别求出P(A),P(AB),在第一次摸出新球的条件下,第二次也摸出新球的概率为:P(B|A)=$\frac{P(AB)}{P(A)}$,由此能求出结果.

解答 解:设事件A表示“第一次摸出新球”,事件B表示“第二次摸出新球”,
则P(A)=$\frac{6}{10}$=$\frac{3}{5}$,P(AB)=$\frac{6}{10}$×$\frac{5}{9}$=$\frac{1}{3}$,
∴在第一次摸出新球的条件下,第二次也摸出新球的概率为:
P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{1}{3}}{\frac{3}{5}}$=$\frac{5}{9}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若点P的柱坐标为(2,$\frac{π}{6}$,$\sqrt{3}$),则P到直线Oy的距离为(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在空间直角坐标系O-xyz中,点P(-2,4,-3)关于yOz平面对称点的坐标为(  )
A.(2,4,-3)B.(-2,-4,3)C.(2,-4,-3)D.(-2,4,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=(sinθ,-1),$\overrightarrow{b}$=($\frac{1}{3}$,cosθ},且$\overrightarrow{a}$∥$\overrightarrow{b}$,则sin2θ的值为(  )
A.$\frac{1}{6}$B.-$\frac{1}{6}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知x∈R,用反证法证明:$\sqrt{3}$+$\sqrt{5}$>$\sqrt{2}$+$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O为坐标原点,对于函数f(x)=asinx+bcosx,称向量$\overrightarrow{OM}=(a,b)$为函数f(x)的伴随向量,同时称函数f(x)为向量$\overrightarrow{OM}$的伴随函数.
(Ⅰ)设函数$g(x)=-sin(\frac{3π}{2}-x)+\sqrt{3}sin(π+x)$,试求g(x)的伴随向量$\overrightarrow{OM}$;
(Ⅱ)记向量$\overrightarrow{ON}=(1,2)$的伴随函数为f(x),求当$f(x)=\frac{{4\sqrt{5}}}{5}$且$x∈(0,\frac{π}{2})$时sinx的值;
(Ⅲ)由(Ⅰ)中函数g(x)的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移$\frac{2π}{3}$个单位长度得到h(x)的图象.已知A(-2,3)B(2,6),问在y=h(x)的图象上是否存在一点P,使得$\overrightarrow{AP}⊥\overrightarrow{BP}$.若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈R,sinx>1,命题q:?a,b∈(0,+∞),$\frac{a+b}{2}$≥$\sqrt{ab}$,则下列判断错误的是(  )
A.p或q为真,非q为假B.p或q为真,非p为真
C.p且q为假,非p为假D.p且q为假,p或q为真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α,β,γ均为锐角,且cos2α+cos2β+cos2γ=1,求证:$\frac{3π}{4}$<α+β+γ<π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的三个内角A,B,C的对边分别是a,b,c,且bcosC+ccosB=2acosB.
(1)求角B.
(2)若$b=\sqrt{13}$,△ABC的周长为$\sqrt{13}+7$,求△ABC的面积.

查看答案和解析>>

同步练习册答案