精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow{a}$=(sinθ,-1),$\overrightarrow{b}$=($\frac{1}{3}$,cosθ},且$\overrightarrow{a}$∥$\overrightarrow{b}$,则sin2θ的值为(  )
A.$\frac{1}{6}$B.-$\frac{1}{6}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

分析 利用向量共线,列出方程,转化求解三角函数值即可.

解答 解:向量$\overrightarrow{a}$=(sinθ,-1),$\overrightarrow{b}$=($\frac{1}{3}$,cosθ},且$\overrightarrow{a}$∥$\overrightarrow{b}$,
可得sinθcosθ=-$\frac{1}{3}$,
则sin2θ=$-\frac{2}{3}$.
故选:D.

点评 本题考查二倍角公式的应用,向量平行的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an},a1=36,a5=$\frac{9}{4}$,求q和S5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式ex≥kx对任意实数x恒成立,则实数k的取值范围为[0,e].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线m,n与平面α,β,γ满足α⊥β,α∩β=m,n⊥α,n?γ,则下列判断一定正确的是(  )
A.m∥n,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xe2x+alnx+2ax(a∈R).
(1)当a<0时,讨论函数f(x)的零点的个数;
(2)若x>0时,恒有f(x)<alnx+2ax+(2-k)(e4x-1)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.四位同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下结论:
①y与x负相关且$\widehat{y}$=-2.756x+7.325;
②y与x负相关且$\widehat{y}$=3.476x+5.648;
③y与x正相关且$\widehat{y}$=-1.226x-6.578;
④y与x正相关且$\widehat{y}$=8.967x+8.163.
其中一定不正确的结论的序号是(  )
A.①②B.②③C.③④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.盒中装有10只乒乓球,其中6只新球,4只旧球,任意摸出2个球使用,已知其中一个是新球的条件下,另一个也是新球的概率为(  )
A.$\frac{5}{13}$B.$\frac{5}{18}$C.$\frac{1}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=(  )
A.{1,-3}B.{1,5}C.{1,0}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A=$\frac{3}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=6.
(1)求△ABC的面积;
(2)若b+c=7,求a的值.

查看答案和解析>>

同步练习册答案