精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A=$\frac{3}{5}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=6.
(1)求△ABC的面积;
(2)若b+c=7,求a的值.

分析 (1)先求出sin A=$\frac{4}{5}$,再由$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos A=$\frac{3}{5}$bc=6,求出bc=10,由此能求出△ABC的面积.
(2)由bc=10,b+c=7,利用余弦定理能求出a的值.

解答 解:(1)∵在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A=$\frac{3}{5}$,
∴A∈(0,π),sin A=$\sqrt{1-(\frac{3}{5})^{2}}$=$\frac{4}{5}$,
∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos A=$\frac{3}{5}$bc=6,
∴bc=10,
∴△ABC的面积为:$\frac{1}{2}$bcsin A=$\frac{1}{2}$×10×$\frac{4}{5}$=4.
(2)由(1)知bc=10,
b+c=7,
∴a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=$\sqrt{(b+c)^{2}-2bc-2bccosA}$=$\sqrt{49-20-20×\frac{3}{5}}$=$\sqrt{17}$.

点评 本题考查三角形的面积的求法,考查三角形的边长的求法,考查三角形面积、正弦定理、余弦定理、同角三角函数关系式、向量的数量积公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=(sinθ,-1),$\overrightarrow{b}$=($\frac{1}{3}$,cosθ},且$\overrightarrow{a}$∥$\overrightarrow{b}$,则sin2θ的值为(  )
A.$\frac{1}{6}$B.-$\frac{1}{6}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α,β,γ均为锐角,且cos2α+cos2β+cos2γ=1,求证:$\frac{3π}{4}$<α+β+γ<π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$).若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(1)求f(x)递增区间;
(2)△ABC中,角A,B,C的对边分别是a,b,c,且(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.△ABC的内角A,B,C所对的边分别为a,b,c.已知a=3,b=5,c=7,则角C=$\frac{2π}{3}$,△ABC的面积S=$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列几种推理过程是演绎推理的是(  )
A.比较5和ln3的大小
B.由平面三角形的性质,推测空间四面体的性质
C.某高中高二年级有15个班级,1班有51人,2班有53人,3班52人,由此推测各班都超过50人
D.由股票趋势图预测股价

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的三个内角A,B,C的对边分别是a,b,c,且bcosC+ccosB=2acosB.
(1)求角B.
(2)若$b=\sqrt{13}$,△ABC的周长为$\sqrt{13}+7$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{b}$|=2.
(1)若<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,求$\overrightarrow{a}$•$\overrightarrow{b}$和|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求向量$\overrightarrow{b}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若|$\overrightarrow{a}$+$\overrightarrow{b}$|=1,$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=1.

查看答案和解析>>

同步练习册答案