精英家教网 > 高中数学 > 题目详情
18.点P(0,2)到直线$\sqrt{3}x+y-4=0$的距离是(  )
A.$\frac{1}{2}$B.1C.2D.4

分析 直接由点到直线的距离公式计算得答案.

解答 解:点P(0,2)到直线$\sqrt{3}x+y-4=0$的距离是d=$\frac{|2-4|}{\sqrt{(\sqrt{3})^{2}+1}}=1$.
故选:B.

点评 本题考查了点到直线距离公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cos(2x$-\frac{π}{3}$)-2sin(x$+\frac{π}{4}$)cos(x$+\frac{π}{4}$)
(1)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.运行程序,输入n=4,则输出y的值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}-\sqrt{6}}{4}$C.$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(x+1)-ax,a∈R.
(1)讨论f(x)的极值;
(2)若$\frac{f(x)+ax}{{e}^{x}}$≤ax对任意x∈[0,+∞)恒成立,求实数a的取值范围(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O为坐标原点,对于函数f(x)=asinx+bcosx,称向量$\overrightarrow{OM}=(a,b)$为函数f(x)的伴随向量,同时称函数f(x)为向量$\overrightarrow{OM}$的伴随函数.
(Ⅰ)设函数$g(x)=-sin(\frac{3π}{2}-x)+\sqrt{3}sin(π+x)$,试求g(x)的伴随向量$\overrightarrow{OM}$;
(Ⅱ)记向量$\overrightarrow{ON}=(1,2)$的伴随函数为f(x),求当$f(x)=\frac{{4\sqrt{5}}}{5}$且$x∈(0,\frac{π}{2})$时sinx的值;
(Ⅲ)由(Ⅰ)中函数g(x)的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移$\frac{2π}{3}$个单位长度得到h(x)的图象.已知A(-2,3)B(2,6),问在y=h(x)的图象上是否存在一点P,使得$\overrightarrow{AP}⊥\overrightarrow{BP}$.若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市统计局就本地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示月收入在[1000,1500)(单位:元)).
(1)估计居民月收入在[1500,2000)的频率;
(2)根据频率分布直方图估计样本数据的中位数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(  )
A.0.312B.0.36C.0.432D.0.648

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数$f(x)=4sinωx•{sin^2}({\frac{ωx}{2}+\frac{π}{4}})-2{sin^2}ωx(ω>0)$在$[{-\frac{π}{2},\frac{2π}{3}}]$上是增函数,则ω的取值范围是(  )
A.(0,1]B.$({0,}\right.\left.{\frac{3}{4}}]$C.[1,+∞)D.$[{\frac{3}{4}}\right.,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$sin2x+cos2x
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

同步练习册答案