精英家教网 > 高中数学 > 题目详情
12.若函数$f(x)=4sinωx•{sin^2}({\frac{ωx}{2}+\frac{π}{4}})-2{sin^2}ωx(ω>0)$在$[{-\frac{π}{2},\frac{2π}{3}}]$上是增函数,则ω的取值范围是(  )
A.(0,1]B.$({0,}\right.\left.{\frac{3}{4}}]$C.[1,+∞)D.$[{\frac{3}{4}}\right.,+∞)$

分析 将函数化简,根据复合函数的性质求出单调区间,与已知区间比较即可.

解答 解:∵f(x)=4sinωx•sin2( $\frac{ωx}{2}$+$\frac{π}{4}$)+cos2ωx-1
=4sinωx•$\frac{1-cos(ωx+\frac{π}{2})}{2}$+cos2ωx-1
=2sinωx(1+sinωx)+cos2ωx=2sinωx,
∴[-$\frac{π}{2ω}$,$\frac{π}{2ω}$]是函数含原点的递增区间.
又∵函数在[-$\frac{π}{2}$,$\frac{2π}{3}$]上递增,∴[-$\frac{π}{2ω}$,$\frac{π}{2ω}$]?[-$\frac{π}{2}$,$\frac{2π}{3}$],
∴得不等式组 $\left\{\begin{array}{l}{-\frac{π}{2ω}≤-\frac{π}{2}}\\{\frac{2π}{3}≤\frac{π}{2ω}}\end{array}\right.$,得 $\left\{\begin{array}{l}{ω≤1}\\{ω≤\frac{3}{4}}\end{array}\right.$,
又∵ω>0,0<ω≤$\frac{3}{4}$,
ω的取值范围是(0,$\frac{3}{4}$].
故选:B.

点评 本题考查复合函数单调区间,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,三棱锥V-ABC中,平面VAB⊥平面ABC,平面VAC⊥平面ABC
(Ⅰ)求证:VA⊥平面ABC
(Ⅱ)已知AC=3,AB=2BC=2$\sqrt{3}$,三棱锥V-ABC的外接球的半径为3,求二面角V-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.点P(0,2)到直线$\sqrt{3}x+y-4=0$的距离是(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)•sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求实数a的最大值和最小值;
(Ⅲ)若当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$3\sqrt{3}$C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的时间为6min,则客船在静水中的速度为(
A.6$\sqrt{2}$km/hB.8km/hC.2$\sqrt{34}$km/hD.10km/h

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知$\sqrt{3}asinC-c({2+cosA})=0$,其中角A、B、C所对的边分别为a、b、c.求
(1)求角A的大小;
(2)若△ABC的最大边的边长为$\sqrt{13}$,且sinC=3sinB,求最小边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且$sinA=\sqrt{6}sinC$,$c=\sqrt{3}$.
(Ⅰ)求a的值;
(Ⅱ)如果$cosA=\frac{{\sqrt{3}}}{3}$,求b的值及△ABC的面积.

查看答案和解析>>

同步练习册答案