精英家教网 > 高中数学 > 题目详情
20.已知两条直线l1:y=3,l2:y=$\frac{2}{m-1}$(2≤m≤6),l1与函数y=|log2x|的图象从左到右交于A,B两点,l2与函数y=|log2x|的图象从左到右交于C,D两点,若a=|$\frac{\overrightarrow{AC}•\overrightarrow{AB}}{|\overrightarrow{AB}|}$|,b=|$\frac{\overrightarrow{BD}•\overrightarrow{CD}}{|\overrightarrow{CD}|}$|,当m变化时,$\frac{b}{a}$的范围是(  )
A.(2${\;}^{\frac{2}{5}}$,4)B.[2${\;}^{\frac{2}{5}}$,4]C.[2${\;}^{\frac{17}{5}}$,32]D.(2${\;}^{\frac{17}{5}}$,32)

分析 作出图形,设$\frac{2}{m-1}$=t,根据平面向量投影的定义得出a,b关于t的函数,从而得出结论.

解答 解:令|log2x|=3,解得x1=$\frac{1}{8}$,x2=8,即A($\frac{1}{8}$,3),B(8,3),
设$\frac{2}{m-1}$=t,则$\frac{2}{5}≤t≤2$,令|log2x|=t,解得x1=2-t,x2=2t,∴C(2-t,t),D(2t,t),
∵$\frac{\overrightarrow{AC}•\overrightarrow{AB}}{\overrightarrow{AB}}$表示$\overrightarrow{AC}$在$\overrightarrow{AB}$上的投影,$\frac{\overrightarrow{BD}•\overrightarrow{CD}}{|\overrightarrow{CD}|}$表示$\overrightarrow{BD}$在$\overrightarrow{CD}$上的投影,
∴a=|$\frac{\overrightarrow{AC}•\overrightarrow{AB}}{\overrightarrow{AB}}$|=2-t-$\frac{1}{8}$,b=|$\frac{\overrightarrow{BD}•\overrightarrow{CD}}{|\overrightarrow{CD}|}$|=|2t-8|=8-2t
∴$\frac{b}{a}$=$\frac{8-{2}^{t}}{{2}^{-t}-\frac{1}{8}}$=2t+3
∵$\frac{2}{5}≤t≤2$,
∴2${\;}^{\frac{17}{5}}$≤2t+3≤32.
故选C.

点评 本题考查了平面向量在几何中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{2}{3}$x3-2ax2-3x
(1)当a=0时,求曲线y=f(x)在点(3,f(3))的切线方程
(2)对一切x∈(0,+∞),af′(x)+4a2x≥lnx-3a-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的一个焦点坐标是(  )
A.(0,2)B.(2,0)C.($\sqrt{14}$,0)D.(0,$\sqrt{14}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆C1:x2+y2+2x+6y+6=0,圆C2:x2+y2-4x-2y+4=0,Q,P都是到两圆的切线长相等的两点,若直线QP将两圆的圆心连线分成的两段长分别为m,n(m>n),则$\frac{m}{n}$=$\frac{14}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}sin2x+2{cos^2}$x+m在$x∈[{0,\frac{π}{2}}]$上的最大值是6.
(1)求m的值以及函数f(x)的单调增区间;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,f(A)=5,a=4,且△ABC的面积为$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}中,an+1=2+$\sqrt{4{a}_{n}-{{a}_{n}}^{2}}$,则a1+a2018的最大值为(  )
A.2B.4C.4-2$\sqrt{2}$D.4+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\sqrt{3}+\sqrt{3}t}\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的方程为sinθ-$\sqrt{3}$ρcos2θ=0.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.五个人排成一排,其中甲、乙两人必须排在一起,丙、丁两人不能排在一起,则不同的排法共有(  )
A.48种B.24种C.20种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线右支上的一点,△POF1为等腰三角形,过点P作y轴的垂线,延长后交双曲线的左支于点Q,若$\overrightarrow{PQ}$=$\frac{1}{2}$$\overrightarrow{{F}_{2}{F}_{1}}$,则双曲线离心率为$\sqrt{3}$+1.

查看答案和解析>>

同步练习册答案