分析 (1)由正弦定理得sinCsinA=$\sqrt{3}sinAcosC$,从而tanC=$\sqrt{3}$,由此能求出C.
(2)由余弦定理,得a=3,由此能求出△ABC的面积.
解答 解:(1)∵△ABC的内角A、B、C的对边分别为a,b,c,且csinA=$\sqrt{3}$acosC,
∴由正弦定理得sinCsinA=$\sqrt{3}sinAcosC$,
∵sinA≠0,∴sinC=$\sqrt{3}cosC$,
∵cosC≠0,∴tanC=$\sqrt{3}$,
∵0<C<π,∴C=$\frac{π}{3}$.
(2)∵b=1,c=$\sqrt{7}$,
∴由余弦定理,得c2=a2+b2-2abcosC,
即7=${a}^{2}+1-2a×\frac{1}{2}$,即a2-a-6=0,
解得a=3(舍去a=-2),
∴△ABC的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×1×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.
点评 本题考查角的大小、三角形的面积的求法,考查正弦定理、余弦定理、三角形面积公式、同角三角函数关系式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{3}}}{2}$ | B. | $3\sqrt{3}$ | C. | $\frac{{9\sqrt{3}}}{2}$ | D. | $\frac{{3\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6$\sqrt{2}$km/h | B. | 8km/h | C. | 2$\sqrt{34}$km/h | D. | 10km/h |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 2π | C. | $\frac{π}{2}$ | D. | 4π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com