精英家教网 > 高中数学 > 题目详情
11.甲、乙、丙3人从1楼乘电梯去商场的3到9楼,每层楼最多下2人,则下电梯的方法有(  )
A.210种B.84种C.343种D.336种

分析 根据题意,分2种情况讨论:①、三人都不在同一层下电梯,②、三人中有2人在同一层下电梯,此时需要分2步进行分析,分别求出每种情况下下电梯的情况数目,由加法原理计算可得答案.

解答 解:根据题意,从3楼到9楼共有7层楼梯,分2种情况讨论:
①、三人都不在同一层下电梯,在7层楼梯中任选3层,安排三人下电梯即可,有A73=210种下电梯的方法,
②、三人中有2人在同一层下电梯,先在3人中任选2人,安排在某一层下电梯,有C32A71=21种情况,
对于剩下的一人,在剩下的6层中任选一层,安排其下电梯,有C61=6种情况,
此时有21×6=126种下电梯的方法,
则下电梯的方法一共有210+126=336种;
故选:D.

点评 本题考查排列组合的应用,注意从3楼到9楼共有7层.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知$\sqrt{3}asinC-c({2+cosA})=0$,其中角A、B、C所对的边分别为a、b、c.求
(1)求角A的大小;
(2)若△ABC的最大边的边长为$\sqrt{13}$,且sinC=3sinB,求最小边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且$sinA=\sqrt{6}sinC$,$c=\sqrt{3}$.
(Ⅰ)求a的值;
(Ⅱ)如果$cosA=\frac{{\sqrt{3}}}{3}$,求b的值及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(sin2x,cos2x),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,则函数f(x)的最小正周期为(  )
A.πB.C.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.电视台与某企业签订了播放两套连续剧的合作合同.约定每集电视连续剧播出后,另外播出2分钟广告.已知连续剧甲每集播放80分钟,收视观众为60万,连续剧乙每集播放40分钟,收视观众为20万,根据合同,要求电视台每周至少播放12分钟广告,而电视剧播放时间每周不多于320分钟,设每周播放甲乙两套电视剧分别为x集、y集.
(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)电视台每周应播映两套连续剧各多少集,才能使收视观众最多,最高收视观众有多少万人?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z满足z=i(1-i),(i为虚数单位)则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若{an}是正项等比数列,已知a2=1,那么前3项之和S3的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目标函数z=2x+y,则(  )
A.z的最小值为3,z无最大值B.z的最小值为1,最大值为3
C.z的最小值为1,z无最大值D.z的最大值为3,z无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知方程a-x2=-2lnx在区间[$\frac{1}{e}$,e]上有解(其中e为自然对数的底数),则实数a的取值范围是(  )
A.[1,$\frac{1}{{e}^{2}}$+2]B.[1,e2-2]C.[$\frac{1}{{e}^{2}}$+2,e2-2]D.[e2-2,+∞)

查看答案和解析>>

同步练习册答案