精英家教网 > 高中数学 > 题目详情
16.已知复数z满足z=i(1-i),(i为虚数单位)则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

分析 利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.

解答 解:z=i(1-i)=1+i.
则|z|=$\sqrt{2}$.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数分别由下表给出:
x123
f(x)131
x123
g(x)321
若f(g(x))=3,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(2cosωx,1),$\overrightarrow{b}$=($\sqrt{3}$sinωx-cosωx,1)(ω>0),函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,若函数f(x)的图象与x轴的两个相邻交点的距离为$\frac{π}{2}$
(1)求函数f(x)的单调增区间
(2)若x∈($\frac{7π}{12}$,$\frac{5π}{6}$)时,f(x)=-$\frac{6}{5}$,求cos2x的值
(3)若cosx$≥\frac{1}{2}$,x∈(0,π),且f(2x)=m有且仅有一个实根,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$(\frac{1}{2})^{|x+m-1|}$是偶函数,g(x)=$\left\{\begin{array}{l}{f(x)}&{x≥0}\\{{x}^{2}+2x+m}&{x<0}\end{array}\right.$,则方程g(x)=|x+$\frac{3}{4}$|实数根的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.甲、乙、丙3人从1楼乘电梯去商场的3到9楼,每层楼最多下2人,则下电梯的方法有(  )
A.210种B.84种C.343种D.336种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果对定义在区间D上的函数f(x),对区间D内任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x${\;}_{{\;}_{1}}$f(x2)+x2f(x1),则称函数f(x)为区间D上的“H函数”,给出下列函数及函数对应的区间
①y=$\frac{1}{3}$x3-$\frac{1}{2}$x2+$\frac{1}{2}$x,(x∈R)
②y=3x+cosx-sinx,x∈(0,$\frac{π}{2}$)
③f(x)=(x+1)e-x,x∈(-∞,1)
④f(x)=xlnx,x∈(0,$\frac{1}{e}$)
以上函数为区间D上的“H函数”的序号是①②(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=(x2-ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则a等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{sin(\frac{π}{2}-x)cos(2π-x)tan(-x+5π)}{tan(π+x)sin(\frac{π}{2}+x)}$,则f($-\frac{43π}{3}$)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$-\frac{\sqrt{3}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a0+a2+a4=(  )
A.243B.242C.121D.120

查看答案和解析>>

同步练习册答案