精英家教网 > 高中数学 > 题目详情
8.已知{an}是等比数列,a1=3,a4=24,数列{bn}满足b1=1,b4=-8,且{an+bn}是等差数列.
(Ⅰ)求数列{an}和{an+bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和.

分析 (Ⅰ)利用等差数列、等比数列的通项公式先求得公差和公比,即可求数列的通项公式;
(Ⅱ)利用分组求和的方法求解数列的和,由等差数列及等比数列的前n项和公式即可求解数列的和.

解答 解:(Ⅰ)设等比数列{an}的公比为q,由题意得a4=a1q3
∴q3=8,
解得q=2,
∴an=3×2n-1
设等差数列{an+bn} 的公差为d,由题意得:a4+b4=(a1+b1 )+3d,
∴24-8=(1+3)+3d,
解得d=4,
∴an+bn=4+4(n-1)=4n,
∴bn=4n-3×2n-1
(Ⅱ)数列{an}的前n项和为$\frac{3(1-{2}^{n})}{1-2}$=-3+3×2n
数列{an+bn}的前n项和为$\frac{1}{2}$n(4n+4)=n(2n+2)=2n2+2n,
故{bn}的前n项和为2n2+2n+3-3×2n

点评 本题考查了等差数列、等比数列的通项公式,考查了利用分组求和的方法求解数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知a∈(0,1),则不等式ln(3a-1)<0成立的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知结论“圆x2+y2=r2(r>0)上一点P(x0,y0)处切线方程为$\frac{{{x_0}x}}{r^2}+\frac{{{y_0}y}}{r^2}=1$”.类比圆的这个结论得到关于椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$在点P(x0,y0)的切线方程为$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{{b}^{2}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.学校高一数学考试后,对90分(含90分)以上的成绩进行统计,其频率分布直方图如图所示,分数在120-130分的学生人数为30人
(1)求这所学校分数在90-140分的学生人数
(2)请根据频率分布直方图估计这所学校学生分数在90-140分的学生的平均成绩
(3)为进一步了解学生的学习情况,按分层抽样方法从分数在90-100分和120-130分的学生中抽出5人,从抽出的学生中选出2人分别做问卷A和问卷B,求90-100分的学生做问卷A,120-130分的学生做问卷B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设α∈{-2,-1,$\frac{1}{3}$,1,2,3},则使幂函数y=xa为奇函数且在(0,+∞)上单调递减的a个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知各项不为0的等差数列{an}满足a6-a${\;}_{7}^{2}$+a8=0,数列{bn}是等比数列,且b7=a7,则b2•b8•b11=(  )
A.8B.2C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线(tan$\frac{π}{3}$)•x+y+1=0的倾斜角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知扇形的周长是6cm,面积是2cm2,则扇形的圆心角的弧度数为(  )
A.1B.4C.1 或4D.2 或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.
(1)求sinC的值;
(2)设BC=15,求△ABC的周长.

查看答案和解析>>

同步练习册答案