精英家教网 > 高中数学 > 题目详情
18.若关于x的一元二次不等式x2-3ax+2a2≥0的解集是(-∞,x1]∪[x2,+∞)(x1≠x2),则a(x1+x2)+$\frac{1}{{x}_{1}{x}_{2}}$的最小值是(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{2\sqrt{6}}{3}$D.$\sqrt{6}$

分析 由题意可得x1,x2为x2-3ax+2a2=0的解,运用韦达定理,可得a(x1+x2)+$\frac{1}{{x}_{1}{x}_{2}}$=3a2+$\frac{1}{2{a}^{2}}$,再由基本不等式即可得到所求最小值.

解答 解:关于x的一元二次不等式x2-3ax+2a2≥0的解集是(-∞,x1]∪[x2,+∞)(x1≠x2),
可得x1,x2为x2-3ax+2a2=0的解,
即有x1+x2=3a,x1x2=2a2
则a(x1+x2)+$\frac{1}{{x}_{1}{x}_{2}}$=3a2+$\frac{1}{2{a}^{2}}$≥2$\sqrt{3{a}^{2}•\frac{1}{2{a}^{2}}}$=$\sqrt{6}$,
当且仅当3a2=$\frac{1}{2{a}^{2}}$时,上式取得最小值$\sqrt{6}$.
故选:D.

点评 本题考查二次不等式和二次方程的关系,注意运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=xlnx(x>0).
(1)求函数f(x)的最小值;
(2)f′(x)为f(x)的导函数,设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(3)若斜率为k的直线与曲线y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:${x}_{1}<\frac{1}{k}<{x}_{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x-${e^{\frac{x}{a}}}$存在单调递减区间,且y=f(x)的图象在x=0处的切线l与曲线y=ex相切,符合情况的切线l有0条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某车间小组共12人,需配置两种型号的机器,A型机器需2人操作,每天耗电30KW•h,能生产出价值4万元的产品;B型机器需3人操作,每天耗电20KW•h,能生产出价值3万元的产品,现每天供应车间的电能不多于130KW•h,则该车间小组应配置A型机器3台,B型机器2台,才能使每天的产值最大,且最大产值是18万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知四棱锥A-CBB1C1的底面为矩形,D为AC1的中点,AC⊥平面BCC1B1
(Ⅰ)证明:AB∥平面CDB1
(Ⅱ)若AC=BC=1,BB1=$\sqrt{3}$.
(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“a<1”是“函数f(x)=|x-a|+2在区间[1,+∞)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=aex-$\frac{1}{2}$x2-x(a∈R).
(1)若曲线y=f(x)在点(0,f(0))处的切线与y轴垂直,求a的值;
(2)若函数f(x)有两个极值点,求a的取值范围;
(3)证明:当x>1时,exlnx>x-$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|2x-1|-|x-4|
(1)解不等式f(x)>2;
(2)求函数y=f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知全集U=R,集合A={x|y=$\sqrt{1-x}$},集合B={x|2x≤8}.
(Ⅰ)求(∁UA)∩B;
(Ⅱ)集合C={x|x<a},若“x∈C”是“x∈A”的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案