精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论:
①直线AM与直线CC1相交;
②直线AM与直线BN平行;
③直线AM与直线DD1异面;
④直线BN与直线MB1异面.
其中正确结论的序号为
(注:把你认为正确的结论序号都填上)

【答案】③④
【解析】∵直线CC1在平面CC1D1D上,
而M∈平面CC1D1D,A平面CC1D1D,
∴直线AM与直线CC1异面,故①不正确,
∵直线AM与直线BN异面,故②不正确,
∵直线AM与直线DD1既不相交又不平行,
∴直线AM与直线DD1异面,故③正确,
利用①的方法验证直线BN与直线MB1异面,故④正确,
总上可知有两个命题是正确的,
故答案为:③④
利用两条直线是异面直线的判断方法来验证①③④的正误,②要证明两条直线平行,从图形上发现这两条直线也是异面关系,得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段

(单位:小时)进行统计,其频率分布直方图如图所示.

)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计

从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;

)从全市高中学生(人数很多)中任意选取3位学生,3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜三棱柱ABC﹣A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1 , 则A1B的长度为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,是偶函数且不存在零点的是(
A.y=x2
B.y=
C.y=log2x
D.y=( |x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>3且a≠ ,命题p:指数函数f(x)=(2a﹣6)x在R上单调递减,命题q:关于x的方程x2﹣3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①三点确定一个平面;
②在空间中,过直线外一点只能作一条直线与该直线平行;
③若平面α上有不共线的三点到平面β的距离相等,则α∥β;
④若直线a、b、c满足a⊥b、a⊥c,则b∥c.
其中正确命题的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2+x+p=0}.
(Ⅰ)若A=,求实数p的取值范围;
(Ⅱ)若A中的元素均为负数,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)设点轴上的射影为点,过点的直线与椭圆相交于 两点,且,求直线的方程.

查看答案和解析>>

同步练习册答案