精英家教网 > 高中数学 > 题目详情
如图所示,过点P (0,-2)的直线l交抛物线y2=4x于A,B两点,求以OA,OB为邻边的平行四边形OAMB的顶点M的轨迹方程.

【答案】分析:设点M(x,y),A(x1,y1),B(x2,y2),根据题意设直线l的方程,联立方程,利用韦达定理,利用平行四边形OAMB中,AB的中点为OM的中点,即可得到结论.
解答:解:设点M(x,y),A(x1,y1),B(x2,y2),根据题意设直线l的方程为y=kx-2(k≠0),
与抛物线方程联立,整理可得k2x2-4(k+1)x+4=0
∵直线l与动点M的轨迹C交于不同的两点A,B,
∴△=32k+16>0,∴
又x1+x2=
∴y1+y2=k(x1+x2)-4=
∵平行四边形OAMB中,AB的中点为OM的中点
∴x1+x2=x=,y1+y2=y=
消去k,可得(y+2)2=4(x+1)
,y=
∴y<-8或y>0,
∴顶点M的轨迹方程为(y+2)2=4(x+1)(y<-8或y>0)
点评:本题考查轨迹方程,考查直线与抛物线的位置关系,考查韦达定理的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,过点P (0,-2)的直线l交抛物线y2=4x于A,B两点,求以OA,OB为邻边的平行四边形OAMB的顶点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:学习高手必修五数学苏教版 苏教版 题型:044

如图所示,过点P(-1,2)的直线l与线段AB相交,若A(-2,-3),B(3,0),求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,过点P(1,2)的直线l交x轴、y轴的正向于A、B两点,求△AOB的面积取最小值时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,过点P(2,4)作互相垂直的直线l1、l2.若l1交x轴于A,l2交y轴于B,求线段AB中点M的轨迹方程.

查看答案和解析>>

同步练习册答案