精英家教网 > 高中数学 > 题目详情

【题目】几位大学生响应国家的创业号召,开发了一款面向中学生的应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动。这款软件的激活码为下面数学题的答案:记集合.例如:,若将集合的各个元素之和设为该软件的激活码,则该激活码应为____________

定义现指定,将集合的元素从小到大排列组成数列,若将的各项之和设为该软件的激活码,则该激活码应为_____________

【答案】376 760

【解析】

,可得到的最小元素为16,令,可得到的最大元素为31,进而可得到第一空的答案;结合二进制表示,当时,的各项可以看成首位为1的六位二进制数,求出,符合条件的有8个数,同理可得到其他情况的个数,即可得到本题答案.

解析:集合

时,

时,

所以共有16个元素,故激活码为

结合二进制表示,当时,的各项可以看成首位为1的六位二进制数,

对于,符合条件的有8个数,

同理对于时,符合条件的也分别是8个数,

故激活码为

故答案为:376;760

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,对任意,点都在函数的图象上.

1)求数列的通项公式;

2)若数列,求数列的前项和

3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 ,且的中点,.

(1)求证:

(2)求证:平面平面

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:

(1)求点D到平面A1BE的距离;

(2)在棱上是否存在一点F,使得B1F∥平面A1BE,若存在,指明点F的位置;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥,底面是边长为的菱形,侧面底面,,,中点,的中点,在侧棱(不包括端点).

(1)求证:

(2)是否存在点,使与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额(万元)的数据如下:

加盟店个数(个)

1

2

3

4

5

单店日平均营业额(万元)

10.9

10.2

9

7.8

7.1

(1)求单店日平均营业额(万元)与所在地区加盟店个数(个)的线性回归方程;

(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数的所有可能取值;

(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.

(参考数据及公式:,线性回归方程,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

1)当时,若对任意恒成立,求的取值范围;

2)若函数有两个不同的零点,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线1(a0b0)的左、右焦点分别为F1F2,点O为双曲线的中心,点P在双曲线右支上,PF1F2内切圆的圆心为Q,圆Qx轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )

A. |OA||OB|B. |OA||OB|

C. |OA||OB|D. |OA||OB|大小关系不确定

查看答案和解析>>

同步练习册答案