精英家教网 > 高中数学 > 题目详情
已知椭圆+=1,过椭圆的右焦点的直线交椭圆于AB两点,交y轴于P点,设=λ1,=λ2,则λ1λ2的值为                                               
A.-           B.-             C.                D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,椭圆C:的焦距为2,离心率为
(1)求椭圆C的方程
(2)设是过原点的直线,是与垂直相交于P点且与椭圆相交于A、B两点的直线,,是否存在上述直线使成立?若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知椭圆的离心率为,椭圆上任意一点到右焦点的距离的最大值为
(I)求椭圆的方程;
(II)已知点线段上一个动点(为坐标原点),是否存在过点且与轴不垂直的直线与椭圆交于两点,使得,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的离心率为,短轴一个端点到右焦点的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程x2+ky2=2表示焦点在y轴上的椭圆,则实数k的取值范围为(   )
A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点为,点在椭圆上,且.
(1)求椭圆的方程;
(2)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的左焦点F。右顶点A,上顶点B,若,则椭圆的离心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知半径为2的圆柱面,一平面与圆柱面的轴线成45°角,则截线椭圆的焦距为
A.B.2C.4D.

查看答案和解析>>

同步练习册答案