精英家教网 > 高中数学 > 题目详情
1.等差数列{an}的前n项和为Sn,且a1=1,S7=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1,则数列{bn}的前1000项和为1893.

分析 利用等差数列的通项公式与求和公式可得an,再利用bn=[lgn],可得b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1,…,b1000=3.即可得出.

解答 解:Sn为等差数列{an}的前n项和,且a1=1,S7=28,7a4=28.
可得a4=4,则公差d=1.
an=n,
bn=[lgn],则b1=[lg1]=0,b2=b3=…=b9=0,b10=b11=b12=…=b99=1.
b100=b101=b102=b103=…=b999=2,b1000=3.
数列{bn}的前1000项和为:9×0+90×1+900×2+3=1893.
故答案为:1893.

点评 本题考查了等差数列的通项公式与求和公式、对数运算性质、取整函数,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知复数z满足i-z=1+2i(其中i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
(1)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$
(2)log225•log34•log59.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a=0.771.2,b=1.20.77,c=π0,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M为PB中点.
(1)证明:CM∥平面PAD;
(2)求二面角A-MC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=x与f(x)=2-x2围成的封闭图形的面积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.正六棱锥得底面周长为24,O是底面的中心,H是BC的中点,∠SHO=60°.
(1)求棱锥的高;
(2)求棱锥的斜高;
(3)求棱锥的侧棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于函数y=f(x),部分x与y的对应关系如表:
x123456789
y745813526
数列{xn}满足x1=2,且对任意n∈N*,点(xn,xn+1)都在函数y=f(x)的图象上,则x1+x2+x3+…+x2016的值为(  )
A.9400B.9408C.9410D.9414

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-3)x+4a,x≥0}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则函数f(x)是单调减函数,a的取值范围是0<a≤$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案