精英家教网 > 高中数学 > 题目详情
已知椭圆E=1(ab>0)的右焦点为F(3,0),过点F的直线交EAB两点.若AB的中点坐标为(1,-1),则E的方程为(  )
A.=1 B.=1 C.=1 D.=1
D
A(x1y1),B(x2y2),则 
①-②得,∴.
x1x2=2,y1y2=-2,∴kAB.
kAB,∴,∴a2=2b2
c2a2b2b2=9,∴bc=3,a=3
E的方程为=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的右焦点为F(1,0),且点(-1,)在椭圆C上.
(1)求椭圆C的标准方程.
(2)已知点Q(,0),动直线l过点F,且直线l与椭圆C交于A,B两点,证明:·为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题:方程所表示的曲线为焦点在轴上的椭圆;命题:实数满足不等式.
(1)若命题为真,求实数的取值范围;
(2)若命题是命题的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若两个椭圆的离心率相等,则称它们为“相似椭圆”.如图,在直角坐标系xOy中,已知椭圆C1=1,A1A2分别为椭圆C1的左、右顶点.椭圆C2以线段A1A2为短轴且与椭圆C1为“相似椭圆”.
 
(1)求椭圆C2的方程;
(2)设P为椭圆C2上异于A1A2的任意一点,过PPQx轴,垂足为Q,线段PQ交椭圆C1于点H.求证:H为△PA1A2的垂心.(垂心为三角形三条高的交点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=x与椭圆C:+=1的交点在x轴上的射影恰好是椭圆的焦点,则椭圆C的离心率为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设P为椭圆+=1(a>b>0)上的任意一点,F1为椭圆的一个焦点,则|PF1|的取值范围为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线C上的动点M(x,y),向量a=(x+2,y)和b=(x-2,y)满足|a|+|b|=6,则曲线C的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,已知椭圆C:+y2=1,在椭圆C上任取不同两点A,B,点A关于x轴的对称点为A′,当A,B变化时,如果直线AB经过x轴上的定点T(1,0),则直线A′B经过x轴上的定点为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.

(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案