精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c在x=1,x=-2时都取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-3,2]都有f(x)>
c2-102
恒成立,求c的取值范围.
分析:(Ⅰ)求出f′(x)并令其=0得到方程,把x=1和x=-2代入求出a、b即可;
(Ⅱ)求出函数的最小值为f(1),要使不等式恒成立,既要证f(1)>
c2-10
2
,即可求出c的取值范围.
解答:解:(Ⅰ)f′(x)=3x2+2ax+b,…(2分)
因为函数在x=1,x=-2时都取得极值,
所以1,-2是3x2+2ax+b=0的两个根…(4分)
1-2=-
2a
3
,-2=
b
3

所以a=
3
2
,b=-6
…(6分)
(Ⅱ) f′(x)=3x2+3x-6=3(x+2)(x-1)…(7分)

x -3 (-3,-2) -2 (-2,1) 1 (1,2) 2
f′(x) + 0 - 0 +
f(x) c+
9
2
极大值c+10 极小值c-
7
2
c+2
所以f(x)在[-3,2]的最小值为c-
7
2
…(10分)
所以要使f(x)>
c2-10
2
恒成立,则只要c-
7
2
c2-10
2

即c2-2c-3<0,解得-1<c<3…(12分)
点评:考查学生利用导数求函数极值的能力,利用导数研究函数单调性的能力,以及掌握不等式的证明方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案