精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|x2-2x-3≤0},B={x∈Z|x≤2},则A∩B中的元素个数为(  )
A.2B.3C.4D.5

分析 求出A中不等式的解集确定出A,找出A与B的交集,即可作出判断.

解答 解:由A中不等式变形得:(x-3)(x+1)≤0,
解得:-1≤x≤3,即A={x|-1≤x≤3},
∵B={x∈Z|x≤2},
∴A∩B={x∈Z|-1≤x≤2}={-1,0,1,2},
则A∩B中的元素个数为4,
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知f′(x)是定义在R上的函数f(x)的导函数,f(0)=1,且f′(x)-2f(x)=0,则f(ln(x2-x))<4的解集为(-1,0)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={x|-1<x<1},N={x|x2<2},则(  )
A.M∩N=NB.N⊆MC.M∩N={0}D.M∪N=N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(Ⅰ)若f(x)≥ag(x)恒成立,求实数a的取值范围;
(Ⅱ)设n∈N*,证明:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$<ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2+a)•ex在(0,f(0))处的切线与直线y=-8x平行.
(Ⅰ)求a的值.
(Ⅱ)求f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了美化景区环境,景区管理单位决定对游客乱扔垃圾现象进行罚款处理.为了更好地实行措施特向游客征求意见,随机抽取了200人进行了调查,得到如表数据:
罚款金额x(单位:元)0102050100
会继续乱扔垃圾的人数y20151050
(Ⅰ)画出散点图,判断变量x与y之间是正相关还是负相关,并求回归直线方程 $\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\hat b$=-0.18,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$;
(Ⅱ)由(Ⅰ)分析,要使乱扔垃圾者的人数不超过5%,罚款金额至少是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-2x-t(t为常数)有两个零点,g(x)=$\frac{{x}^{2}+t}{x-1}$.
(Ⅰ)求g(x)的值域(用t表示);
(Ⅱ)当t变化时,平行于x轴的一条直线与y=|f(x)|的图象恰有三个交点,该直线与y=g(x)的图象的交点横坐标的取值集合为M,求M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=f(x)是(-1,1)上的偶函数,且在区间(-1,0)是单调递增的,A,B,C是锐角△ABC的三个内角,则下列不等式中一定成立的是(  )
A.f(sinA)>f(cosA)B.f(sinA)>f(cosB)C.f(sinC)<f(cosB)D.f(sinC)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F2(1,0),点P(1,$\frac{{\sqrt{2}}}{2}$)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设E,F为椭圆C上的两点,O为坐标原点,直线OE,OF的斜率之积为-$\frac{1}{2}$.求证:三角形OEF的面积为定值.

查看答案和解析>>

同步练习册答案