精英家教网 > 高中数学 > 题目详情
2.已知b<a<0,$\root{3}{a}$-$\root{3}{b}$=m,$\root{3}{a-b}$=n,则有(  )
A.m>nB.m<nC.m=nD.m≤n

分析 b<a<0,可得$\root{3}{a}$-$\root{3}{b}$=m>0,$\root{3}{a-b}$=n>0,$\root{3}{ab}$>0.计算n3-m3即可得出.

解答 解:∵b<a<0,∴$\root{3}{a}$-$\root{3}{b}$=m>0,$\root{3}{a-b}$=n>0,
∴n3-m3=(a-b)-$(a-b-3\root{3}{{a}^{2}b}+3\root{3}{a{b}^{2}})$=$3\root{3}{ab}$$(\root{3}{a}-\root{3}{b})$>0,
∴n>m.
故选:B.

点评 本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.已知点P(x,y)
是角θ终边上一点,|OP|=r(r>0),定义f(θ)=$\frac{x-y}{r}$.对于下列说法:
①函数f(θ)的值域是$[-\sqrt{2},\sqrt{2}]$;
②函数f(θ)的图象关于原点对称;
③函数f(θ)的图象关于直线θ=$\frac{3π}{4}$对称;
④函数f(θ)是周期函数,其最小正周期为2π;
⑤函数f(θ)的单调递减区间是[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$],k∈Z.
其中正确的是①③④.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若$sin(\frac{π}{6}+α)=\frac{1}{3}$,则$cos(\frac{π}{3}-α)$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:$\frac{{cos(π+x)•sin(3π-x)•cos(-\frac{π}{2}-x)}}{{tan(π+x)•cos(\frac{3π}{2}-x)•sin(x-\frac{π}{2})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an}为等差数列,且a4=8,a3+a7=20.
(1)求数列{an}的通项公式an
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在实数集上的函数,且f(x+2)=$\frac{1+f(x)}{1-f(x)}$,f(1)=$\frac{1}{4}$,则f(2015)=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.a=-1是直线4x-(a+1)y+9=0与直线(a2-1)x-ay+6=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y=-2sin(\frac{π}{4}-\frac{x}{2})$的周期、振幅、初相分别是(  )
A.$2π,-2,\frac{π}{4}$B.$4π,2,\frac{π}{4}$C.$2π,2,-\frac{π}{4}$D.$4π,2,-\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用分析法证明:已知a,b∈R且a≠b,则$|\frac{1}{{a}^{2}+1}-\frac{1}{{b}^{2}+1}|<|a-b|$.

查看答案和解析>>

同步练习册答案