精英家教网 > 高中数学 > 题目详情
如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.

(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.
(I).(II)

试题分析:(I)以O为原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系.
则有A(0,0,2),B(3,0,0),C(0,4,0),E(0,2,0).
 
所以,cos<>.         
由于异面直线BE与AC所成的角是锐角,
所以,异面直线BE与AC所成角的余弦值是.   
(II)
设平面ABE的法向量为
则由,得

又因为
所以平面BEC的一个法向量为n2=(0,0,1),
所以
由于二面角A-BE-C的平面角是n1与n2的夹角的补角,
所以,二面角A-BE-C的余弦值是
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,应用空间向量,使问题解答得以简化。本解答利用了“向量法”,简化了证明过程,实现了“以算代证”。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若a,b是两条直线,α是一个平面,则下列命题正确的是(   )
A.若a∥b,则a平行于经过b的任何平面
B.若a∥α,则a与α内任何直线平行
C.若a∥α,b∥α,则a∥b
D.若a∥b,a∥α,bα,则b∥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体中,分别是棱的中点,则与平面所成的角的大小是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分13分)
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.

(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)如图1,在三棱锥PABC中,平面ABCD为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。

(1)证明:平面PBC
(2)求三棱锥DABC的体积;
(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知经过同一点的N个平面,任意三个平面不经过同一条直线.若这个平面将空间分成个部分,则                        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。

查看答案和解析>>

同步练习册答案